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 THE IMPOSSIBILITY OF ACCURATE STATE
 SELF-MEASUREMENTS*

 THOMAS BREUER?t

 Department of History and Philosophy of Science
 University of Cambridge, UK

 It is shown that it is impossible for an observer to distinguish all present states
 of a system in which he or she is contained, irrespective of whether this system
 is a classical or a quantum mechanical one and irrespective of whether the time
 evolution is deterministic or stochastic. As a corollary, this implies that it is
 impossible for an observer to measure the EPR-correlations between himself or
 herself and an outside system. Implications of the main result are discussed for
 how we have to conceive of universally valid theories.

 1. Introduction. In this paper I shall analyze the consequences of pos-
 tulating universal validity for a physical theory. As far as quantum me-
 chanics is concerned, von Neumann assumed the theory to be universally
 valid and thus was led to the measurement problem. Bohr denied the
 universal validity of quantum mechanics for "purely logical reasons," and
 thereby avoided confrontation with the measurement problem. It has often
 (see for example Dalla Chiara 1977, Peres and Zurek 1982, Roessler 1987,
 Finkelstein 1988, Penrose 1989, Primas 1990) been suggested that self-
 reference problems for universally valid theories may pose serious dif-
 ficulties for a quantum mechanical description of the measurement ap-
 paratus. The aim of this paper is to investigate these suggestions.

 I will say that a theory is universally valid in the absolute sense if it
 is true of the whole world, without any reference to observers. In section
 2 some arguments claiming that absolutely universally valid theories can-
 not be deterministic will be reviewed and criticised.

 In section 3 I give the central argument why no apparatus can distin-
 guish all states of a system in which it is properly contained. Self-
 reference properties play a crucial role in the argument. Whether the sys-
 tem is a quantum mechanical one or a classical one, and whether the time
 evolution is deterministic or stochastic, is irrelevant.

 Then in section 4 I turn to quantum mechanics and arrive at the ad-
 ditional conclusion that no quantum mechanical apparatus can measure
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 THOMAS BREUER

 the Einstein-Podolsky-Rosen correlations between itself an external sys-
 tem.

 In section 5 the central result is applied to the question of how we have
 to conceive of universally valid theories. It leads to the conclusion that

 absolutely universally valid theories at least partially lack operational jus-
 tification in the sense that there is no experiment able to distinguish all
 states. Still an absolutely universally theory might be ontologically mean-
 ingful. From an operational point of view, theories can at most be uni-
 versally valid in a relative, observer dependent sense. This corroborates
 conjectures made in the context of quantum mechanics by Peres and Zurek
 1982, Roessler 1987, Finkelstein 1988, and Primas 1990, saying that self-
 reference problems might be the reason why quantum mechanics is not
 applicable to the observer. But it shows two additional things: first, in
 quantum mechanics these conclusions do not rely on the deterministic or
 linear character of the time evolution; and second, we have similar con-
 clusions in classical theories.

 2. Received Arguments Against Deterministic Universally Valid The-
 ories. 2.1. Absolute Universal Validity. In a rather vague and strong
 formulation, the thesis of absolute universal validity of a physical theory
 says that such a theory is true of the whole "world," or of the whole
 "universe," without any reference to observers. Such a theory is univer-
 sally valid in the sense that no part of the "universe" is excluded from
 its domain of validity. Still, I would not like to call it a theory of every-
 thing because it need not describe phenomena at all levels of complexity,
 from nuclear physics to sociology. I call it universally valid in an absolute
 way because it does not make any reference to observers.

 At first sight, an absolutely universally valid theory of material reality
 seems to be the ultimate goal of scientific inquiry. This was expressed
 for example in the dream (or nightmare) of Laplace's demon. If a uni-
 versally valid theory were deterministic, the demon could use it to cal-
 culate any future state of the universe from its present state.

 Popper (1950) argues that however complete the information provided
 to the demon about its own past or present state, there will always be
 some questions about its own future state which the demon cannot an-
 swer. This is the thesis of non-self-predictability. The demon can make
 accurate predictions only about the outside world. Therefore, if one wants
 to maintain-in Laplace's spirit-that in the presence of a deterministic
 time evolution the demon should be able to predict the future of the whole
 universe, then one has to exclude the demon from the universe. (This is
 perhaps why Laplace's demon is a demon. If it can make predictions
 about the whole universe, but still not itself, then it must be a truly super-
 natural being outside our material world. It is not just demonic because
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 THE IMPOSSIBILITY OF ACCURATE STATE SELF-MEASUREMENTS 199

 of its great calculational abilities.) Rothstein (1964) shows that the second
 law of thermodynamics imposes restrictions on the accuracy of measure-
 ments which Maxwell's demon, considered as part of the thermodynamic
 system, can perform. Dalla Chiara (1977) and Peres and Zurek (1982)
 present different arguments for why a deterministic theory cannot be uni-
 versally valid in the absolute sense. They also arrive at similar conclu-
 sions: non-self-predictability is inevitable. Every deterministic theory must
 admit the existence of unpredictable events when a predictor applies it to
 himself. This unpredictability is present even in classical mechanics with
 a deterministic time evolution.

 I believe the conclusion of non-self-predictability is correct. It will fol-
 low from the fact that no observer can obtain or store information suf-

 ficient to distinguish all states of a system in which he is contained.
 (Non-self-predictability implies that we can never fully verify the alleg-
 edly deterministic character of an absolutely universally valid theory. Being
 unable to assess whether or not the time evolution of the world is deter-

 ministic, the problem of whether free will and determinism are compat-
 ible loses some of its relevance. But the fact that the assumption of a
 deterministic time evolution of the universe cannot be checked does not

 preclude deciding whether free will and determinism are compatible. This
 may be decidable by conceptual analysis alone.) But of course non-
 predictability, or non-self-predictability, does not disprove determinism.

 2.2. Relative Universal Validity. Peres and Zurek (1982) present an
 argument against absolute universal validity which is particularly simple
 and seemingly convincing. They argue that no physical theory can at the
 same time fulfil the three requirements of absolute universal validity, ex-
 perimental verifiability and determinism.

 The reason they give is the following. For the experimental verifiability
 of a physical theory they regard it as a necessary condition that the ex-
 perimenter can freely choose which experiment he is going to make. They
 argue that a universally valid theory that is deterministic precludes the
 free choice of the observer and thus experimental verifiability.

 To illustrate this, they look at interpretations of quantum mechanics
 which drop one or the other of the three requirements. First, one can have
 universal validity and determinism, but drop experimental verifiability.
 Everett's (1957) relative state interpretation is a theory of this kind in that
 the universe is completely described by quantum mechanics and follows
 a deterministic unitary time evolution. (Determinism does not hold for
 the single branches of the universe.)

 Second, one can consider theories which are universally valid and grant
 the observer free choice. Such theories cannot be deterministic. Quantum
 mechanics, with the observer considered as a quantum mechanical system
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 and using the projection postulate to describe the measurement process,
 would be such a theory. This theory applies to the apparatus as well, but
 the stochastic behavior described by the projection postulate defies de-
 terminism. (Perhaps von Neumann's (1932) quantum theory can be re-
 garded as such a theory. This depends on whether one wants to consider
 as universally valid a theory which can perhaps describe the whole ma-
 terial reality, but not the observer's mind.)
 Peres and Zurek (1982) conclude that if quantum mechanics is uni-

 versally valid at all, then it is so only in the relative sense that every
 observer can, perhaps, apply it to any selected part of the world, except
 himself. It supposedly applies to Schr6dingers cat, Wigner's friend, and
 Wigner himself under the condition that they lose their status of observer
 and are observed by something or somebody else. (The point here is not
 that quantum mechanics can really be applied to every phenomenon of
 the external world. Quantum theory merely serves as an example of a
 theory which might be universally valid.) They conclude that experi-
 mentally fully-justifiable theories can be universally valid at most in the
 relative sense.

 I agree with Peres and Zurek's conclusion, but in my view their ar-
 gument must be challenged. First, I think that they are unnecessarily re-
 strictive by assuming that a universally valid theory describes phenomena
 at all levels of complexity, including mental phenomena like free will.
 This concept of absolute universal validity is stronger than the one I use,
 but of course Peres and Zurek are free to do that. Second, and this is
 more important, they take it as granted that an observer who is described
 by a deterministic theory does not have the freedom to choose his ex-
 perimental set-up. Determinism and free will are assumed as mutually
 exclusive. This may be so but it is controversial. Peres and Zurek need
 the assumption of determinism only to preclude the observer in a uni-
 versally valid theory from having free will, thereby excluding experi-
 mental verifiability of a universally valid deterministic theory. If deter-
 minism does not necessarily exclude the free will of the observer, then
 the argument fails.

 But I think the conclusion that an absolutely universally valid theory
 (even in the weaker sense I use) is not fully justifiable from an operational
 point of view, can be obtained with a different argument, one where
 determinism has no role to play.

 3. The Central Argument. In this section I present an argument as to
 why it is impossible for an observer to distinguish all states of a system
 in which he or she is contained. The argument exploits self-reference
 properties, but it does not make any assumptions about the character of
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 THE IMPOSSIBILITY OF ACCURATE STATE SELF-MEASUREMENTS 201

 the time evolution. It is valid for quantum-mechanical as well as for clas-
 sical theories.

 3.1. Self-reference in Physical Theories. Popper 1950, Rothstein 1964,
 Dalla Chiara 1977, Peres and Zurek 1982, Roessler 1987, Finkelstein
 1988, Primas 1990, and Mittelstaedt 1993 allude to a possible connection
 between self-reference properties of formal systems and restrictions on
 measurability in universally valid theories. Since my argument will ex-
 ploit self-reference properties, let me first make some remarks about sim-
 ilarities and differences between G6del's theorem and my argument.

 Propositions about physical systems can be reformulated by saying "The
 state of the system has this and this property." So instead of speaking
 about propositions, we can equally well speak about sets of states: to each
 proposition there corresponds the set of states for which the proposition
 is true. The way to test propositions about physical systems is to make
 experiments on the system. Good experiments give information about the
 state of the system, and whether or not this information is compatible
 with the proposition under consideration can then be checked. So good
 experiments serve to at least partially constitute the semantics of physical
 theories. In this sense, observation is a semantic concept.

 Tarski (1956, 1969) calls a language semantically closed if it contains
 (1) semantic concepts and (2) expressions referring to its own proposi-
 tions. The language of a physical theory describing experiments can be
 closed semantically: If apparatus and object system, as well as their in-
 teraction, can be described by the theory, then the semantic concept of
 observation can be introduced into the language of the theory. Also, re-
 placing propositions by states provides the language of the theory with
 expressions for its propositions. Additionally, there are propositions re-
 ferring to other propositions: the apparatus states after the experiment are
 not only states in their own right, they also refer to states of the observed
 system. Thus, one arrives at a theory whose language is semantically
 closed.

 The language of the formal system used by G6del is not semantically
 closed: its language does not contain any expressions referring explicitly
 to metatheoretical concepts. But after assigning numbers to the propo-
 sitions, these numbers can be interpreted as expressions of the language
 referring to its own propositions. Also, one observes that some propo-
 sitions in the formal system hold if and only if the system has certain
 properties. By interpreting these propositions as propositions about the
 system, one transfers metatheoretical concepts down to the level of the
 theory. For example, provability (restricted to meaning the existence of
 a formal proof) is such a metaconcept transferred down to the level of
 the formal system. These two interpretational steps make it possible to
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 intuitively regard the system as semantically closed, although strictly
 speaking it is not.
 In a semantically-closed language it is possible to formulate self-

 referential propositions. The self-reference may be paradoxical or con-
 sistent. In the formal system used by G6del, a self-referential proposition
 with the following intuitive meaning is formulated: "This proposition is
 not provable." The formal expression of this is the Godel formula. It is
 neither refutable nor provable within the formal system. (This is G6del's
 theorem.) But the Godel formula is true by the standards of informal
 number theory.

 Similarly, in the language of a physical theory describing observations,
 there will be paradoxically self-referential propositions, or rather para-
 doxically self-referential states. Since the reference is from apparatus states
 to states of the observed system, self-reference can and will occur if the
 apparatus is contained in the observed system. The result that it is im-
 possible for an apparatus in the observed system to discriminate all states
 of the observed system somewhat resembles Godel's theorem. Also, the
 fact that an apparatus outside the observed systems in general can distin-
 guish all states seems to be analogous to the fact that the Godel formula
 is true in informal number theory.

 In spite of these similarities, there are important differences between
 Godel's proof and my result. In fact, the most important parts of G6del's
 proof do not have a parallel in my argument. First, the formal system
 used by Godel is not semantically closed in the strict sense. In my ar-
 gument there is nothing similar to Godel's ingenious idea to do without
 semantic closure by introducing the Godel numbers. Second, Godel
 proved his result without assuming that provable statements are true. This
 considerably strengthens his result, because it does not rely on the con-
 troversial concept of "truth in informal number theory." (Guido
 Bacciagaluppi pointed out to me that assuming provable statements to be
 true in informal number theory would have discredited G6del's result in
 the eyes of the intuitionists. But both formalists and intuitionists accepted
 the informal concept of truth in finite, or constructive, number theory.
 Godel relied only on this concept of truth.) w-consistency was all that
 Godel needed, and in modern proofs it can in fact be replaced by the
 weaker requirement of consistency. It is probably not exaggerated to say
 that my argument does not have much more in common with G6del's
 proof than the use of self-reference.

 3.2. Description of Measurements. Let us assume that we have a
 physical theory whose formalism specifies sets of possible states for the
 systems it describes. These states may refer to individual systems or to
 statistical ensembles. In an individual formulation of classical mechanics,
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 THE IMPOSSIBILITY OF ACCURATE STATE SELF-MEASUREMENTS 203

 for example, the states would correspond to the points on phase space,
 whereas in a statistical formulation they would be probability distribu-
 tions, i.e., normalized L'-functions on phase space. In quantum mechan-
 ics, the individual states would be pure, i.e., extremal, normalized, pos-
 itive, linear functionals on the observables, whereas the statistical states
 would be r-weakly continuous and therefore correspond to the normal,
 positive, normalized, linear functionals on the observables.

 A measurement performed by an apparatus A on some observed system
 O is an interaction establishing certain relations between the states of A
 and of 0. After a measurement, we infer information about the state of

 the observed system from information we have about the state of the
 apparatus. I will take it that the states of A and of O refer to the same
 time after the experiment. To describe this inference, let us use a map 0
 from the power set 9P(SA) of the set W~ of apparatus states into the power
 set P(Sfo) of the set e? of system states.' 0 assigns to every set SA of
 apparatus states (except the empty set) the set O(SA) of object states com-
 patible with the information that the apparatus after the experiment is in
 one of the states in SA. This defines the inference map 0 which depends
 on the kind of measurement we are making. 0 is different in different
 measurement situations. But when the observer chooses the experimental
 set-up, he also chooses a map 0 describing how he is going to interpret
 the pointer reading after the experiment. This map is fixed throughout
 the measurement. The states in 0(S9,) are the possible states of O after
 the experiment; usually not every state of O is a possible state after the
 experiment. We have 0(SI) C We.

 Knowing that if the apparatus after the experiment is in a state SA the
 observed system must be in a state in O({SA}), one infers from the infor-
 mation that the apparatus after the experiment is in one of the states in
 SA that the state of the observed system must be in UCSAEA ({SA}). So
 0(SA) = USACSA ({sA}).

 I will say that in an experiment with inference map 0 a state So, EG o
 is exactly measurable if after the measurement there exists a set SA E
 9P(~S) of apparatus states referring uniquely to the state so, i.e., O(SA) =
 {so}. An experiment with inference map 0 is said to be able to distinguish
 the states sl, s2 if there is one set SA of final apparatus states referring to
 s, b , and another set S2 referring to 52 but not to s,: O(SA1)
 s, 0(S2) and O(SA) q S2 0 0(SA).

 If a state so is exactly measurable, we can say that if the apparatus is
 in one of the states in SA, then the measured system is with certainty in
 the state So. (In general SA will consist of several apparatus states, because

 'Note that the curly symbol Y,5 refers to the set of all apparatus states, whereas SA refers
 to some set of apparatus states. Similarly for Wc and So.
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 we usually do not make the inference from the exact state of the appa-
 ratus, but rather just from the pointer value.) If a state is exactly mea-
 surable, it can be distinguished from any other possible final state, i.e.,
 from any other state in 0(Sf). But for two states to be distinguishable it
 is not necessary that either of them be exactly measurable. If all possible
 final states are distinguishable from one another, then they are all exactly
 measurable.

 The concepts of exact measurability and distinguishability are strong.
 The results to follow-namely the impossibility of distinguishing from
 inside all states-do not deny the possibility of internal observers know-
 ing something about their own states.

 Let me say something about distinguishability of states for external
 observers in classical and quantum theory. In classical mechanics all in-
 dividual states (i.e., points in phase space) at least in principle can be
 distinguished by a joint measurement of position and momentum. There
 is no lower bound to the accuracy of such a measurement. Also, statistical
 states (i.e., probability distributions on phase space) can be distinguished
 in statistical experiments. Note, however, that individual states even in
 principle cannot be measured exactly in a statistical experiment.2 But I
 do not think that this is a problem since it is only due to the fact that in
 a statistical description of experiments one uses a concept of state which
 describes individual systems.

 In quantum mechanics the situation is different. No measurement of
 the first kind can distinguish all states of an individual system: the only
 pure states which are a possible measurement outcome are the eigenstates
 of the measured observable. If a pure state is either not an eigenstate of
 the measured observable or is an eigenstate belonging to a degenerate
 eigenspace, it is not exactly measurable. On the statistical level every-
 thing is all right again: there are statistical experiments which can distin-
 guish all statistical states-for spinless particles this can be done for ex-
 ample in unsharp joint measurements of position and momentum (see
 Busch 1982, Mittelstaedt et al. 1987). These measurements are infor-
 mationally complete3 and therefore can distinguish all statistical states.

 2The reason for this (see Primas 1979) is the following: In statistical experiments we
 measure probability distributions which are o-additive. Defining-in a somewhat opera-
 tionalist spirit-statistical states to be what you can measure in statistical experiments, one
 takes the statistical states to be those which induce probability distributions. For states on
 von Neumann algebras this is equivalent to both ro-weak-continuity or normality. Taking
 L(fQ) as the algebra of observables of the classical system with phase space fl, the sta-
 tistical states of a classical system correspond to the normalized elements of the predual
 L(fl). They are probability measures on the phase space. Since there is no normalised Ll-
 function on fn whose support is just one point, no individual state is a statistical state and
 vice versa. Therefore no statistical experiment can specify a unique individual state.

 3A positive-operator-valued measure a on the value space R" is called informationally
 complete if tr(a(A)pl) = tr(a(A)p2) for all Borel subsets A of Rn is only possible if the
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 Traditionally it has been considered a peculiarity of quantum mechanics
 that no single experiment can distinguish all pure states. But the argument
 I will present shows that the same occurs for any measurement where the
 observer is properly included in the observed system. This is true for
 classical theories as well as for quantum theories and irrespective of the
 character of the time evolution. So many quantum mechanical lessons
 about the role of the observer are perhaps not so specific for quantum
 mechanics, rather they seem to reflect a more general problem.

 3.3. Measurements from Inside. Let us now return to the argument.
 To bring self-reference into the game, consider the case where the ap-
 paratus is measuring a system in which it is contained. So the observed
 system O is composed of the apparatus A and of a rest R. We assume
 that the observed system has more degrees of freedom than the apparatus
 and contains it. This can be formulated in an assumption of proper in-
 clusion:

 (3s, s' E FO) :SIA = S'IA S ? s'.

 Here slA denotes the state of A which is determined by restricting the state
 s of O to the subsystem A. So |A describes a surjective map from the
 states of 0 to the states of A. (Later I will, by a slight abuse of notation,
 also denote by IA the map from SP(SP) into SP(Pf) defined by SIA =
 {SIA : s E So}.) In classical mechanics, for example, a map IA is defined
 by discarding coordinates which refer to degrees of freedom of O which
 are not in A. In quantum mechanics, one can take iA to be for example
 the partial trace over R. For our purposes it is enough to take an arbitrary
 but fixed map.

 Whether the assumption of proper inclusion is satisfied or not depends
 not only on the sets WfS, We but also on the restriction map IA. One can
 give examples of sets WS, So and two restriction maps such that the as-
 sumption of proper inclusion is satisfied with respect to one but not the
 other. (Take for example as We the natural numbers and as Wa the even
 natural numbers. If one takes as restriction map Sfy -- S3 a : n ~-> 2n, then
 the assumption of proper inclusion is not satisfied. If the restriction map
 associates to every n E We two times the biggest natural number less or
 equal to n/2, then the assumption of proper inclusion is satisfied.) This
 may seem odd but it is not. After all, the elements of SJa and WF are
 states of different systems. Therefore, even if ffA is some subset of We,

 density matrices p, p2 are equal. The positive-operator-valued measures on R" describe
 generalized observables with values in R". Observables in the traditional sense are self-
 adjoint operators on the Hilbert space and induce via their spectral resolution a projection-
 valued measure on R. Such an observable can never be informationally complete.
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 we cannot infer automatically that A is a subsystem of O; an arbitrary
 subset of Sf cannot in general be interpreted to be the set of states of a
 subsystem of 0. The restriction map |A gives physical information which
 is not reflected in the structure of the sets Sf9 or We, namely the fact that
 A is a subsystem of 0. That A is a subsystem of O not only depends on
 the abstract structure of A (and of 0), but on which system A is. If A and
 A' are isomorphic and A is a subsystem of 0, it does not follow that A'
 is a subsystem of 0.

 The assumption of proper inclusion seems trivial in the sense that the
 bigger system O needs more parameters to fix its state. But it excludes
 situations in which each physically possible state of the whole system is
 uniquely determined by a state of a subsystem together with some con-
 straint. (I take constraint to mean that states violating the constraint are
 physically impossible in the sense that the system can never be in such
 a state.)

 Let me briefly say something about the connection of my results to the
 self-measurements of Albert (1983, 1987). The quantum mechanical au-
 tomata described by Albert measure also something about themselves, but
 they do not attempt to determine their own state exactly. In Albert's de-
 scription the apparatus A is composed of several subsystem Al, A2,
 A3, .... Measurement results of non-commuting observables A, B of a
 system S are displayed by pointer observables PA of A1 and PB of A2.
 Since [PA ? 1A2 A, 01A PB1 = 0 but [A, B] # 0, measurement results for
 A and B can be displayed simultaneously but they cannot both be accu-
 rate. In Albert's kind of self-measurement an observable B(') of the sys-
 tem AI U S is measured by the subsystem A3 of the apparatus with the
 pointer observable PB(1). The crucial point is now that even if [1A, ( A,
 B(#)] 0 0, the apparatus A1 U A3 can measure them both simultaneously
 with full accuracy if [B(), 1AI, A] = [B(1), PA ? ls]. This peculiarity is
 due to the fact that the measurement of the observable B(') involves a
 measurement on the system Al. Since the apparatus Al U A3 makes this
 measurement, it is surely a self-measurement in the sense that the ap-
 paratus AI U A3 is partially contained in the observed system AI + S. But
 it is not fully contained in the observed system. Therefore Albert's mea-
 surements are not self-measurements in the stronger sense that the as-
 sumption of proper inclusion is fulfilled. Albert's conclusions are there-
 fore not related to the results of this chapter.

 3.4. A First Attempt. For exact measurability of all states it is nec-
 essary (but not sufficient) that there is a surjective map from the states
 of A onto the states of 0. But if additionally A is a properly included in
 0, there are strictly more states of O than states of A. If O has only
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 finitely many possible states, this already exludes the possibility of exact
 measurement of all states from inside the observed system.

 If we deal with systems with infinitely many possible states, it would
 be natural to require continuity of the mapping: if two states of A are
 close then the corresponding states of O should also be close to each
 other. This additional requirement in classical mechanics implies that the
 phase spaces of A and 0 must have the same dimension, because there
 could not be a continuous bijection between the phase spaces if they were
 of different, finite dimension. But the phase spaces of A and O cannot
 have the same dimension if A is properly included in 0. So under the
 assumption of continuity exact measurability of all states from inside in
 classical mechanics is at most feasible if the phase space SWe is infinite
 dimensional. Since this case is difficult to handle I will drop the assumption
 of continuity altogether. Instead I take an entirely different approach.

 3.5. A Consistency Condition and the Main Results. The states of the
 apparatus after the measurement are self-referential: they are states in their
 own right, but they also refer to states of the observed system in which
 they are contained. This leads to a meshing condition for the inference
 map 0 which must be satisfied lest the inference map be contradictory:

 For every apparatus state A E SDf, the restriction of the system states
 0({sA}) to which it refers should again be the same apparatus state sA.
 So meshing can be written: VSA E SP : {SIA : E O({SA})} = {SA}.

 (By a slight abuse of notation I will write O({SA})|A instead of {SIA : s E
 O({sA})}.)

 From the physical point of view the meshing condition is not a restric-
 tive requirement. Rather it is motivated by logics: it just guarantees that
 we cannot arrive at contradictory conclusions about the apparatus state.
 Assume that the meshing condition is violated and that therefore there is
 a state s' E 0({SA}) such that s' A 0 SA. Then knowing that after the ex-
 periment the apparatus is in the state SA, we would conclude that O is in
 one of the states in 0({sA}), possibly in s'. From this in turn we conclude
 that A can be in the state s'[A, which contradicts the assumption that A is
 in the state SA.

 Note that the meshing condition has to be imposed because both SA and
 O({SA})IA describe the state of A at one given time. This reflects the fact
 that self-reference problems only occur if an observer wants to know his
 present state.

 With the meshing condition at hand we can now establish that not all
 states of a system can be measured exactly by an internal observer. The
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 intuitive reason for this is that the meshing condition and the assumption
 of proper inclusion prevent the existence of a bijection from 9'? to WSe.4

 PROPOSITION 1: The assumption of proper inclusion and the meshing
 condition imply that not all states of a system can be measured ex-
 actly by an internal observer. 3So E 9f, VSA E 9P(Sf ) : O(SA) #
 {so}.

 Proof: To prove this indirectly, suppose now that the observer can mea-
 sure all states of O exactly: (Vs E Sff)(3SAE G P(9)) : 0(SA) = {S}.
 This assumption together with the meshing condition will lead to a
 contradiction.

 From the assumption of proper inclusion it follows that (3s, s' E
 9S') : SIA = S'IA, S # S'. By assumption there are SA, SA E 9P(9A) such
 that (SA) = {s}, O(SA) = s'}. Since UsAESA O({A}) = 0(SA) = {S} there is
 a A E SA such that 0({SA}) = {s}. Similarly, there is a sA E SA such that
 0({sA}) = {s'}- Repeated application of the meshing condition yields {s}
 = ({SA})= 0({0({SA)l})A = 0({s })= O({sIA})= O({({SA})A})= 0({})

 = {s'}, contradicting s #= s'. QED.

 LEMMA: The meshing condition implies that

 (VSA) : 0({SA}) = {s EC sp: s E 0(S I), A= SA}.

 Proof: Let s E O({5A}), then the meshing condition implies slA E ({SA})|A
 = {SA}. So SIA = SA and O({SA}) C {s E 9' : s E 0(0f), SIA = SA}.
 Conversely, let s E fr be such that s\A = sA for some SA and s E
 0(S9). Then there is a sA E CW such that s E 0({sA}). Then again
 from the meshing condition we conclude that siA = SA. SoA = SA
 and s E 0({SA}). QED.

 PROPOSITION 2: Let sl, s2 be two states of 0 fulfilling SJIA = s21A. Then
 there is no inference map 0, and thus no measurement using as ap-
 paratus A, which can distinguish sl and s2:

 (V0) : ((3S, SA E 9P(S)) : O(SA) 3 s1 0o(SA4), 0(SA) 3 s52 0(S2)).

 4There could, of course, be bijections not fulfilling the meshing condition. For example,
 if Y5 is infinite but countable, and if for every state SA ES eS there are only finitely many
 s E Si' such that SIA = SA, then there is a bijection 0 between WSF and Sec. But since 3sA
 E S e: '({SA})IA # {SA} the meshing condition is not fulfilled. Therefore 4 describes a
 contradictory inference.

 There could also be bijections between 9e and SWe fulfilling the meshing condition but
 violating the assumption of proper inclusion. Take for example as SeC the natural numbers
 and as S9' the even natural numbers. If one takes as restriction map SY --> W : n --> 2n,
 and as inference map 0: ?p(se) --> G (so), {2n} -> {n}, then the meshing condition is
 satisfied because 0({2n})[A = {2n}. But the assumption of proper inclusion is not satisfied.
 This is natural because Se, C Soe does not imply that A is a subsystem of 0. See the
 discussion after the assumption of proper inclusion was introduced.
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 Proof: Assume that there exists an inference map 0, and sets SA, S2 of
 apparatus states such that 0(SA) B s1 I 0(S), 0(S\) B s2 E 0(SA).
 This will lead to a contradiction.

 From s5 E O(SA) = UsESA 0({s}) 5 s2 we conclude that there is a sA
 E SA such that s1 E 0({sA}) and that s2 9 O({SA}) for all SA E SA. S2 E
 O(S2) implies that s2 E O(SWA). Using the Lemma we conclude from s, E
 0({sA}) that s1IA = S.A Since s2 E 0(JfP) and S21A = SIA = SA we conclude
 from the Lemma also that s2 E 0({sA}). This is in contradiction with the
 fact that s2 ~ 0({SA}) for all SA E S1. QED.

 The result of Proposition 1 can be reformulated in a way reflecting the
 analogy with G6del's result.

 Corollary: Under the assumption of proper inclusion, if all states are
 exactly measurable from inside the system then the inference map 0
 is contradictory (i.e., the meshing condition is violated). (Vs E S?o)(35A
 E A) : 0({SA}) = {S} implies (3so E WS) : 0({solA})[A V {SoA}.

 Proof: From the assumption of proper inclusion we know that there
 are s, s' E Sy such that s = s', s\A = s'\A. By the antecedent, there
 are states A, sA E WS such that 0({sA}) = {S} and 0({sA}) = {s'}.
 Assume that 0 satisfies the meshing condition for sA : ({s})|A =
 {sA}. Then {s'lA} = ({S)A = {sA }. So sI = s'lA and 0({s'lA}) = {s'}.
 This leads to {s} $ {s'}'= 0({'A}) = 0({slA}). Therefore, if the mesh-
 ing condition is satisfied for S'IA, then it is not satisfied for slA. QED.

 The state SoIA plays a role analogous to the Godel formula. Since 0({slA})IA
 S {olA}, this state is self-referential in a paradoxical way. A second anal-
 ogy becomes apparent when we reformulate the main result in still an-
 other way. Recall that an observable is called informationally complete
 if by measuring it one can distinguish all the states (for a precise defi-
 nition see footnote 2.) Now the main result can be formulated in a way
 reminiscent of G6del's incompleteness theorem: No measurement from
 inside the observed system can be informationally complete. In spite of
 the intuitive similarities with G6del's theorem we should not forget the
 fundamental differences between the two situations.

 4. Measurement of EPR-correlations. The main results presented until
 now are true for classical and for quantum mechanics, and irrespective
 of the character of the time evolution. Stronger results hold when we take
 into account particular features of the quantum mechanical situation. This
 is what I will deal with now.

 EPR-correlations and Their Measurability from Inside. Consider again
 an observed system O containing the apparatus A and some environment
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 or residue R, O = A U R. Assume that all these systems are correctly
 described by quantum mechanics. If the systems A and R have Hilbert
 spaces eA and e?R as state spaces, then the EPR-correlations in the vector
 state tf E NA 0? R can be obtained for example from the coefficients of
 i/ in Schmidt's (1908) biorthonormal decomposition. i/ can be expanded
 as f = E An,a 0 8p,, where {an} and {(3n} are sets of orthonormal vectors
 in XA and 3R respectively. The EPR-correlations vanish if and only if if
 is a product state, i.e., if all coefficients An except one vanish. The phases
 n, of the coefficients A, = IAlei*" describe the EPR-correlations: if the
 coefficients A', A2 of two different states qif, 4/2 of the joint system differ
 only in their phases 44, 42, then their restrictions to any one of the two
 subsystems obtained by partial tracing are the same (mixed) states:

 lIlA = E Al121a)(n = A (an\)(l =
 n n

 and similarly for l\IR, 1\R.
 Generalizing this property of EPR-correlations in pure states of a com-
 posite system, we will say that two (possibly mixed) states differ only in
 the EPR-correlations between the subsystems if and only if the states are
 different but the restrictions by partial trace of both states to any of the
 subsystems coincide. The correlations have been named after Einstein,
 Podolsky, and Rosen, because in the version of their (1935) argument
 presented by Bohm (1951, sections 15-19, Chapter 22), the antisym-
 metric spin state of two electrons with total spin zero has this property.
 After a first kind quantum measurement of an apparatus A on an ex-
 ternal observed system R, the assumption of proper inclusion is fulfilled:
 A is properly included in the composite system A U R. Agreed, such a
 measurement establishes strict correlations between a certain quantity of
 A (the pointer value) and the measured quantity, so that after the exper-
 iment some states of A may determine uniquely some states of R and also
 of A U R. Still, the states of A do not determine uniquely all possible
 states of R: states of the composite system in which the strict correlations
 do not obtain are physically possible. (Usually the joint system is in such
 a state before the measurement.) These states guarantee that the assump-
 tion of proper inclusion is satisfied.

 But what is more, due to the existence of EPR-correlations, the as-
 sumption of proper inclusion is satisfied in a more radical way than in
 classical mechanics. In classical mechanics, the restrictions to A and R
 of a pure states of O determine this state uniquely. In quantum mechanics,
 there are uncountably many pure states of O whose restrictions to A and
 R coincide.

 Now consider two arbitrary states s1, s2 of the joint system A U R which
 differ only in the EPR-correlations between A and R. I will argue that for
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 the apparatus A it is impossible to distinguish the states s1, s2. (In the
 context of quantum field theories a similar result was shown by Komar
 (1964).)

 EPR-correlations cannot be measured in experiments just on the ex-
 ternal system R. Such experiments can at most determine the reduced
 density matrix of R. This density matrix does not encode any information
 about the EPR-correlations between A and R. Therefore correlation ex-

 periments have to be measurements on the joint system A U R. Since we
 require that A should make these measurements, the measuring apparatus
 is properly contained in the observed system. We are thus in a position
 to apply Proposition 2. It implies that for the apparatus A there is no
 inference map 0, und thus no measurement, such that there is one set
 SA of final apparatus states referring (possibly not uniquely) to s1 but not
 to s2, and another set SA referring to s2 but not to sl. We therefore con-
 clude that A is unable to distinguish s, and s2.

 Hence A cannot distinguish states of O which differ only in the EPR-
 correlations between A and R. But of course an observer only partially
 or not at all contained in A U R could measure the EPR-correlations be-
 tween A and R.

 5. Universal Validity Revisited. 5.1. Now let us return to the question
 of how we should conceive of universally valid theories. If a theory is
 universally valid in the absolute sense, it does not allow for an observer
 not described by the theory. Take 0u to be the biggest system described
 by an absolutely universally valid theory. 0u might be called the "world,"
 or the "universe." As all potential observers are described by the theory,
 0O does not have any outside observer. (In the terminology of Roessler
 (1987), Finkelstein (1988), and Primas (1990) a system without external
 observer is called endophysical.) If, and this is a slightly stronger as-
 sumption, the union of all observers fulfills the assumption of proper in-
 clusion, then, according to Proposition 1, there are some states of Ou
 which cannot be measured exactly by any observer, not even by all of
 them together. (It does not help to share out the work of measuring the
 state of Ou between several observers, for if the union of observers still
 obeys the assumptions of proper inclusion and the meshing condition,
 then the Proposition holds.) So no experiment can distinguish all states
 of O0. Is it acceptable that an absolutely universally valid theory describes
 systems for which there are no experiments, which at least in principle
 can distinguish all states? How one answers this question depends on
 one's philosophical proclivities.

 A physical realist would rather not dismiss a theory just because it does
 not make sufficient reference to test procedures. In his opinion, there are
 entities which in some sense are independent of human knowledge. State-
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 ments about these entities should not be conflated with statements about

 the knowledge of the entities. From this point of view, the fact that no
 experiment, not even in principle, can distinguish all states is not in itself
 objectionable. Accordingly, a physical realist would not take the above
 argument as sufficient reason to exclude the possibility of absolutely uni-
 versally valid theories.

 An extreme operationalist would say that a physical theory is mean-
 ingless unless it is linked to procedures for obtaining knowledge. So he
 might insist on using the term "state" in a way which guarantees that
 there is some experiment that at least in principle can distinguish all states,
 even if technical problems make this difficult in practice. Consequently,
 the extreme operationalist would think that a theory should be operational
 in the sense that there is some experiment able to distinguish all states.
 But, as we have seen above, absolutely universally valid theories do not
 have this property. From this point of view the possibility of absolutely
 universally valid theories, deterministic or not, would have to be rejected.

 The operationalist, being forced to deny the possibility of absolutely
 universally valid theories, has to find a different, weaker concept of uni-
 versal validity. The first thing to realize is that for an external observer,
 or one who is at least partially external, the assumption of proper inclu-
 sion is violated, and thus Proposition 1 does not apply. So an external
 observer, or an at least partially external one, may be able to distinguish
 all states of the observed system. Let us take O to be the biggest system
 described by the operationalist's theory. Since the operationalist requires
 that some experiment must be at least conceivable which can distinguish
 all states of 0, he has to admit observers partially outside 0. In what
 sense can a theory having an observer outside the biggest system it can
 describe be universally valid?

 If we interpret "describe" in the ontic sense of "is true of," a theory
 having an observer outside the biggest system it can describe is not uni-
 versally valid at all. But an operationalist would prefer to interpret "de-
 scribe" in the epistemic sense of "can be applied by an observer so as to
 lead to asserted sentences." What a theory can describe therefore depends
 on the observer applying the theory. The above results imply that no
 observer can apply the theory to the whole world: if he applies it to a
 system he is properly contained in, then with no experiment can he dis-
 tinguish all states of the system. For each observer, every system to which
 he can apply the theory must not contain himself. Still, the theory might
 be universally valid in the sense that for every part of the world some
 observer can apply the theory to it. Since-for an operationalist-the
 range of applicability of a theory depends on the observer, I call such a
 theory universally valid in the relative sense.

 Nowhere in these considerations does the assumption enter that we are
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 dealing with a quantum mechanical system; the whole argument holds
 true for classical mechanics as well. As long as one adopts a strictly
 operationalist position, one can conclude by the above argument that even
 classical mechanics can be universally valid at most in the relative sense.

 5.2. The Universal Validity of Quantum Mechanics. It has often been
 claimed that traditional quantum mechanics cannot describe the observer
 and that therefore it is universally valid at most in the relative sense. This
 conclusion was briefly discussed in section 2 in connection with the ar-
 gument of Peres and Zurek (1982).

 Applied to quantum mechanics, my arguments lead to two novel as-
 pects. First, the conclusion of relative universal validity does not depend
 on the deterministic or on the linear character of the Schrodinger time
 evolution. At least if one adopts an operationalist point of view, one can
 explain by self-reference problems alone why quantum mechanics can be
 universally valid at most in the relative sense.

 Second, for quantum mechanics one arrives at stronger conclusions.
 Up to now, I have discussed implications of self-reference problems for
 the universal validity of general physical theories. The starting point of
 the argument was that, if the union of all potential observers is properly
 included in the universe Ou, no experiment can distinguish all states of
 Ou. This was a consequence of Proposition 1. In quantum mechanics we
 have the particular situation that there exist many states of Ou which differ
 only by the EPR-correlations between the subsystems of Ou. Therefore,
 there are many different states which differ only by the EPR-correlations
 between all potential observers. The restriction of all these states to the
 observers coincide. Then it follows from Proposition 2 that given two
 such states, there is no experiment able to distinguish between them. This
 is stronger than the conclusion that no observer can distinguish all states.

 An operationalist might try maintain absolute universal validity of a
 classical theory by renouncing the requirement that there be an experi-
 ment able to distinguish all states. Instead he could just require that for
 any two different states of his theory there is some experiment able to
 distinguish between them. This option is not open in quantum mechanics:
 there are states of 0, which cannot be distinguished by any experiment.
 Therefore even this more modest operationalist would have to admit that
 quantum mechanics can be universally valid at most in the relative sense.

 REFERENCES

 Albert, D. Z. (1983), "On Quantum-mechanical Automata", Physics Letters A 98: 249-
 252

 .(1987), "A Quantum Mechanical Automation", Philosophy of Science 57: 577-
 585

 Bohm, D. (1951), Quantum Theory. Englewood Cliffs: Prentice Hall

This content downloaded from 92.107.85.156 on Sat, 04 Feb 2017 12:53:57 UTC
All use subject to http://about.jstor.org/terms



 THOMAS BREUER

 Busch, P. (1982), "Indeterminacy Relations and Simultaneous Measurements in Quantum
 Theory", International Journal of Theoretical Physics 24: 63-92

 Dalla Chiara, M. L. (1977), "Logical Self-Reference, Set Theoretical Paradoxes and the
 Measurement Problem", Journal of Philosophical Logic 6: 331-347

 Einstein, A.; Podolsky, B.; and Rosen, N. (1935), "Can Quantum-Mechanical Description
 of Physical Reality Be Considered Complete?" Physical Review 47: 777-780

 Finkelstein, D. (1988), "Finite Physics", in R. Herken (ed.): The Universal Turing Ma-
 chine. A Half-Century Survey, Oxford: Oxford University Press, pp. 349-375

 Komar, A. (1964), "Undecidability of Macroscopically Distinguishable States in Quantum
 Field Theory", Physical Review 133B: 542-544

 Mittelstaedt, P. (1993), "Measurement induced interrelations between quantum theory and
 its interpretation", in P. Busch, P. Mittelstaedt, and P. Lahti: Proceedings of the
 Symposium on the Foundations of Modern Physics 1993, Singapore: World Scientific,
 pp. 269-280

 Mittelstaedt, P., Prieur, A., and Schieder, R. (1987), "Unsharp Particle Wave Duality in
 a Photon Split-Beam Experiment", Foundations of Physics 17: 891-903

 Penrose, R. (1989), The Emperor's New Mind. Oxford: Oxford University Press
 Peres, A. and Zurek, W. H. (1982), "Is Quantum Mechanics Universally Valid?", American

 Journal of Physics 50: 807-810
 Popper K. R. (1950), "Indeterminism in Classical Physics and Quantum Physics", British

 Journal for the Philosophy of Science 1: 173-195
 Primas, H. (1979), "Foundations of Theoretical Chemistry", in Quantum Dynamics of

 Molecules: The new Experimental Challenge to the Theorist, NATO Advanced Stud-
 ies Series Vol. 57, New York: Plenum Press, pp. 41-113

 . (1990), "Mathematical and Philosophical Questions in the Theory of Open Quantum
 Systems", in A. I. Miller (ed.): Sixty-two Years of Uncertainty: Historical, Philosophical
 and Physics Inquiries into the Foundations of Quantum Mechanics, New York: Plenum

 Roessler, O. E. (1987), "Endophysics", in J. L. Casti and A. Karlqvist (eds.): Real Brains-
 Artificial Minds, New York: North-Holland, pp. 25-46

 Rothstein, J. (1964), "Thermodynamics and Some Undecidable Physical Questions",
 Philosophy of Science 31: 40-48

 Schmidt, E. (1908), "Zur Theorie der linearen und nichtlinearen Integralgleichungen",
 Mathematische Annalen 63: 433-476, and 64: 161-174

 Tarski, A. (1956), Logics, Semantics, Metamathematics. Oxford: Clarendon
 . (1969), "Truth and Proof", Scientific American 220: 63-77

 214

This content downloaded from 92.107.85.156 on Sat, 04 Feb 2017 12:53:57 UTC
All use subject to http://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18

	Issue Table of Contents
	Philosophy of Science, Vol. 62, No. 2 (Jun., 1995), pp. 179-356
	Front Matter
	Folk Psychology and Cognitive Architecture [pp. 179-196]
	The Impossibility of Accurate State Self-Measurements [pp. 197-214]
	Truthlikeness, Translation, and Approximate Causal Explanation [pp. 215-226]
	Is Mathematical Competence Innate? [pp. 227-240]
	Toward a Defensible Bootstrapping [pp. 241-260]
	Explanation and Evaluation in Cognitive Science [pp. 261-282]
	The Metaphoric Origins of Objectivity, Subjectivity, and Consciousness in the Direct Perception of Reality [pp. 283-303]
	Discussion
	Salmon on Explanatory Relevance [pp. 304-320]

	Causality and Conserved Quantities: A Reply to Salmon [pp. 321-333]
	Book Reviews
	Review: untitled [pp. 334-335]
	Review: untitled [pp. 335-337]
	Review: untitled [pp. 337-338]
	Review: untitled [pp. 338-340]
	Review: untitled [pp. 340-341]
	Review: untitled [pp. 341-343]
	Review: untitled [pp. 343-345]
	Review: untitled [pp. 345-346]
	Review: untitled [pp. 346-348]
	Review: untitled [pp. 348-350]
	Review: untitled [pp. 350-351]
	Review: untitled [pp. 351-353]

	Back Matter [pp. 354-356]



