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Abstract

The phenomenon of nonlocality, which can arise when entangled quantum systems
are suitably measured, is perhaps one of the most puzzling features of quantum
theory to the philosophical mind. It implies that these measurement statistics cannot
be explained by hidden variables, as requested by Einstein, and it thus suggests that
our universe may not be, in principle, a well-determined entity where the uncertainty
we perceive in physical observations stems only from our lack of knowledge of the
whole.

Besides its philosophical impact, nonlocality is also a resource for information-
theoretic tasks since it implies secrecy: If nonlocality limits the predictive power
that any hidden variable (in the universe) can have about some observations, then it
limits in particular the predictive power of a hidden variable held by an adversary
in a cryptographic scenario. We investigate whether nonlocality alone can empower
two parties to perform unconditionally secure communication in a feasible manner
when only a provably minimal set of assumptions are made for such a task to be
possible — independently of the validity of any physical theory (such as quantum
theory).

Nonlocality has also been of interest in the study of foundations of quantum the-
ory and the principles that stand beyond its mathematical formalism. In an attempt
to single out quantum theory within a broader set of theories, the study of nonlo-
cality may help to point out intuitive principles that distinguish it from the rest. In
theories where the limits by which quantum theory constrains the strength of non-
locality are surpassed, many “principles” on which an information theorist would
rely on are shattered — one example is the hierarchy of communication complex-
ity as the latter becomes completely trivial once a certain degree of nonlocality is
overstepped.

In order to study the structure of such super-quantum theories — beyond their
aforementioned secrecy aspects — we investigate the phenomenon of distillation of
nonlocality, the ability to distill stronger forms of nonlocality from weaker ones. By
exploiting the inherent connection between nonlocality and secrecy, we provide a
novel way of deriving bounds on nonlocality-distillation protocols through an ad-
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versarial view to the problem.
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Chapter 1

Introduction

“A modern mathematical proof is not very different from a modern machine, or a
modern test setup: The simple fundamental principles are hidden and almost invisi-
ble under a mass of technical details.” — Hermann Weyl

1.1 Nonlocality and foundations of quantum
theory

Why is quantum theory as it is? Although very useful, is not at ease to the common
scholar to swallow the fact that some classical information in real world experi-
ments, i.e., the state of a system and the choice of the tested physical property, can
be assigned to a normalised positive operator acting on an Hilbert space of some
dimension in the first case and a positive operator valued measure (POVM) in the
second. But through the Born rule, they correctly predict the conditional probabili-
ties P(a | x) inferred from real world experiments for the outcomes of an experiment
finding the value a of the chosen state-observable combination x. In Weyl’s spirit we
need to ask: What are the fundamental principles behind the mathematical formal-
ism of quantum theory, and what are the distinguishing properties of the conditional
probabilities P(a | x) that quantum theory predicts and that we observe in nature?

One of the most puzzling features of quantum theory is nonlocality. Bell [Bel64]
showed that the distributions P(ab | xy) (we call them also boxes from now on) quan-
tum mechanics produces when several observables are measured on a bipartite sys-
tem — x ∈ X and y ∈ Y denote the choices of observables (for a fixed state) and
a ∈ A and b ∈ B the respective measurement outcomes — cannot be described by
local hidden variables, as conjectured by Einstein, Podolsky, and Rosen [EPR35].
Let us illustrate Bell’s reasoning by an example. Assume that two spatially sep-
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2 1.1 Nonlocality and foundations of quantum theory

arated players, Alice and Bob, have access to a (black) box with unknown inner
workings and input and output panels on both sides. Upon insertion of input x, Al-
ice immediately obtains the output a, and similarly Bob obtains b upon insertion of
y with the conditional input-output distribution P(ab | xy), where we assume that the
inputs and outputs are binary. We assume that both players have a free choice for
their inputs, which implies that the output of one party has to be independent of the
input of the other party — otherwise, e.g., Alice could use her part of the box first
to obtain a and thus predict Bob’s input y, which is in contradiction to him choosing
y freely. Formally, this means that the marginal distributions of the outputs satisfy
P(a | xy) = P(a | x) and P(b | xy) = P(b | y) or, equivalently, the equations∑

b

P(ab | xy) =
∑

b

P(ab | xy′) ∀ a, x, y, y′∑
a

P(ab | xy) =
∑

a

P(ab | x′y) ∀ b, x, x′, y . (1.1)

The conditions 1.1 are called no-signalling conditions — would they not be sat-
isfied, the players could use the box for instantaneous communication and be in
contradiction with Einstein’s theory of relativity. Let us define the quantity

CHSH(P) :=
1
4

∑
xy

P(a ⊕ b = x · y | xy) , (1.2)

which describes the average probability that the parity of the outputs is equal to the
product of the inputs of the box. We assume now that the internal workings of the
box are chosen to maximise CHSH(P). In classical probability theory, any strategy
to produce an outcome a (or respectively b) can be assumed a probabilistic mixture
of deterministic strategies. If a deterministic strategy to produce the bit a has to be
no-signalling, it can be represented by a function a(x) since it must be independent
from y. As a(x) is locally computed we refer to it also as a local deterministic
strategy. Let us write out the winning condition that the local deterministic strategies
a(x) and b(y) have to satisfy for the four inputs (x, y)

a(0) ⊕ b(0) = 0 (1.3)

a(1) ⊕ b(0) = 0 (1.4)

a(0) ⊕ b(1) = 0 (1.5)

a(1) ⊕ b(1) = 1 . (1.6)

If we sum over the four equations (1.3) to (1.6) and take the parity on both sides,
we obtain 0 on the left-hand side and 1 on the right-hand side: For any assignment



3 1.1 Nonlocality and foundations of quantum theory

of a(x) and b(y) we arrive at a contradiction. Consequently, any local deterministic
strategy

(
a(x), b(y)

)
can satisfy at best three of the four equations (1.3) to (1.6),

which is achieved by a(x) = b(y) = 0, and reach at best a value of 3/4 for the quantity
defined in (1.2). This holds then also for convex combinations of such strategies and
implies that any P(ab | xy) that is no-signalling (or local) and arises from classical
probability theory must satisfy the so-called CHSH inequality [CHSH69]

CHSH(P) ≤
3
4
. (1.7)

Let us assume that internally the black box can perform measurements on a joint
quantum system in the state ρAB. The two players are spatially separated, hence,
we may assume that on each side the box interacts locally with the respective sub-
system, i.e., local observables are measured. As mentioned above, the conditional
probabilities P(ab | xy) that arise from quantum mechanics are distributed according
to the Born rule

P(ab | xy) = Tr
(
Πx

a ⊗ Π
y
b ρAB

)
, (1.8)

where Πx
a is a projector on the subspace of eigenvalue a that corresponds to the

outcome a for the chosen local observable indexed with the value x. Real-world
experiments [ADR82] have convincingly shown a violation of (1.7) up to almost
a value of ≈ 0.85 by making measurements of different angles of polarisation of
entangled photons. This is also the maximum value quantum mechanics allows for,
i.e., if we require the inner workings of box P(ab | xy) to obey the laws of quantum
mechanics, it must satisfy the so-called Cirelson’s bound [Cir80]

CHSH(P) ≤
2 +
√

2
4

≈ 0.85 . (1.9)

Quantum systems that exceed the bound for local (classical) strategies (1.7) are thus
said to behave non-locally. We are interested in the features of such nonlocality,
which does not exist in classical probability theory, and if it exists, why it is still
limited in quantum theory by the bound (1.9)?

Let us come back to our starting point and the question ’why is quantum me-
chanics as it is?’, which we like to inquire from a purely information-theoretic point
of view. One desires intuitive reasons why the boxes P(ab | xy) not allowed by the
Born rule (1.8) also do not exist in nature. Reasons that stand candidates for the
fundamental principles on which one can base a more intuitive axiomatic approach
to quantum theory. In standard textbooks the axioms on which quantum theory is
based are more or less the mathematical description of its abstract formalism. It is
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largely desired to find a more intuitive and less formal axiomatic system on which
to base quantum theory — as is the case for Einstein’s general theory of relativity.
Especially as such intuition for the underlying principles may also aid to tackle one
of the great challenges in theoretical physics, to find a unified theory of quantum
mechanics and Einstein’s theory of relativity. One starting point, also philosophi-
cally appealing, is the axiom of free choice that, as mentioned above, implies that
multi-partite distributions P(ab | xy) have to be no-signalling.1 Of course, the latter
is also necessary to avoid contradiction with relativity theory. Popescu and Rohrlich
showed that there exist boxes, denoted PR in their honour, which are no-signalling
yet exceed the quantum bound: they violate (1.7) up to the algebraic maximum of 1
and are defined as

PR(ab | xy) :=
{ 1

2 if a ⊕ b = x · y
0 otherwise .

(1.10)

What are the information-theoretic consequences of the existence of such super-
quantum distributions? A first answer was given in [vD99] showing that distribu-
tions as (1.10) render communication complexity trivial: using PR boxes as a re-
source, Alice and Bob can compute any distributed Boolean function with just one
bit of classical communication. In [BBL+06], this result was extended to the prob-
abilistic setting and it was shown that noisy versions of (1.10), which we denote
PRε,

PRε(ab | xy) :=
{ 1−ε

2 if a ⊕ b = x · y
ε
2 otherwise .

(1.11)

allow Alice and Bob to compute any distributed Boolean function with arbitrarily
low error probability and a constant amount of communication if ε . 0.09. Note that
the nonlocality of PRε is CHSH(PRε) = 1 − ε, and through a depolarisation proto-
col [MAG06], by use of three bits of classical shared randomness any box P(ab | xy)
with CHSH(P) = 1 − ε can be converted into a PRε without communication. Thus,
an axiom of non-trivial communication complexity would rule out any box P(ab | xy)
with such strong nonlocality CHSH(P) & 0.91 to exist in nature. This stimulated a

1Actually, the argument relies rather on the precursor of free choice, the existence of free ran-
domness, where we refer to the notion of Colbeck and Renner [CR11]. Their definition of free
randomness boils down to a random variable x being independent from any other random variable y
upon its moment of instantiation. Of course, later other (non-free) random variables can be created
which are correlated to x as, otherwise, x would not effect any process in the universe and thus not
be of any interest at all. Note that such a definition requires itself already an underlying causal (pre-)
ordering of events to define when a random variable lies in the future of another and thus the authors
speak of “space-time variables”.



5 1.1 Nonlocality and foundations of quantum theory

series of further works with reasonably compelling principles [LPSW07], [PPK+09],
[NW10], [DLR12], [FSA+13], which hold in quantum theory but are violated ex-
actly if there exist boxes P(ab | xy) that have a stronger degree of nonlocality than
allowed by quantum theory and do violate Cirelson’s bound (1.9). However, none of
these could recover exactly the set of quantum boxes generated by (1.8) (see Figure
1.1 for a pictographic view).

Further works showed that nonlocality can be distilled. Forster, Winkler, and
Wolf presented a protocol, where, by using many identical no-signalling boxes
P(ab | xy) with a certain degree of nonlocality CHSH(P), Alice and Bob can sim-
ulate a box P̂(ab | xy) with a higher degree of nonlocality CHSH(P̂) > CHSH(P)
without communication [FWW09]. Boxes P(ab | xy) from which such distillation
of nonlocality is possible have been coined distillable. Then in [BS09] a pro-
tocol was presented that enables Alice and Bob to use correlated boxes P, with
CHSH(P) = 3/4 + δ for an δ arbitrarily small, to simulate PR boxes with arbitrary
precision. Correlated boxes are mixtures between a PR box and a box that always
outputs perfectly random but correlated bits A and B for any input. Therefore, boxes
arbitrarily close to the set of quantum boxes render communication complexity triv-
ial as well. The question remained open whether potentially all post-quantum dis-
tributions P(ab | xy) would violate the principle of communication complexity being
non-trivial. This stimulated further research on the distillation of nonlocality. Other
distillation protocols were found [ABL+09], [Ras12] and this allowed to exclude
more super-quantum boxes P(ab | xy). But indications in [ABL+09] and common
intuition conjectured that PRε boxes are not distillable, i.e., it is not possible to
simulate boxes P̂ with CHSH(P̂) > CHSH(PRε) = 1 − ε.

Chapter 4 focuses on the limits of nonlocality distillation protocols using PRε.
In [Sho09], it has been shown that distillation is impossible by protocols using only
two PRε. By numerical analysis, this no-go result could be extended to protocols
using up to nine PRε as resources [For11]. Using an unbounded number of re-
sources, impossibility of distillation was shown in [HR10] for a slightly restricted
subset of non-adaptive distillation protocols, where the inputs to the resources are
chosen independently of other outputs. Dukaric and Wolf presented an intricate ar-
gument, which relates distillation of nonlocality to (non-interactive) distillation of
entanglement and is thus based on the mathematical formalism of quantum theory,
that showed that as long as the resources PRε are quantum (see (1.8) and Figure 1.1)
distillation is strongly limited [DW08].

Only recently, a breakthrough was achieved by Beigi and Gohari [BG14]. Through
an elaborate argument, no less intricate than the one from Ducaric and Wolf, for
which they introduce an additional mathematical formalism, the authors prove com-
plete impossibility of nonlocality distillation by general protocols when the resources
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Figure 1.1. Schematic view on a slice of the no-signalling polytope and overview of
previous results regarding distillation of nonlocality: The outer sides of the triangle
mark the bounds that no-signalling conditions (1.1) place on a box P(ab | xy). No-
signalling conditions are, as well as positivity and normalisation constraints, linear
constraints in the entries P(ab | xy) and, thus, the set of no-signalling boxes P(ab | xy)
forms a polytope, i.e., the no-signalling polytope. The scale on the left side indicates
the degree of nonlocality where the classical limit (1.7), the quantum limit (1.9),
the limit beyond which communication complexity becomes trivial, and finally the
algebraic maximum are displayed from bottom to top. Below the triangle the set of
classical boxes is indicated. The blue curve marks the limit of the set of quantum
boxes, i.e., boxes P(ab | xy) that can be generated by the Born rule (1.8). Above
the blue curve are the super-quantum boxes, where the two straight dark red lines,
the horizontal one at CHSH(P) ≈ 0.91 and the tilted one close to the right edge
of the triangle, indicate the limit above which communication complexity has been
shown to become trivial [BBL+06], [BS09]. The right edge of the triangle is the
set of correlated boxes Cδ, a mixture of the perfect PR and two perfectly random
correlated bits which correspond to the bottom right corner of the triangle, where the
δ indicates the weight of the PR box in the composition. A box Cδ can be distilled
along this edge (almost) up the perfect PR box. Boxes above the two dotted red
curves have shown to be distillable, however, the the grey curved arrows on the left
indicate the direction in which they are mapped by (repeated) application of known
distillation protocols [ABL+09]. The vertical green line in the middle of the triangle
represents the PRε boxes, which are proven not to be distillable (only) above the
quantum bound [BG14]. Below the quantum bound distillation using PRε boxes is
at best very limited [DW08].
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PRε are super-quantum, i.e., they violate (1.9). If the players are also allowed to ac-
cess classical shared randomness during the distillation protocol, their proof requires
that a certain quantity named maximal correlation takes its minimum on PRε for all
boxes P with CHSH(P) = 1−ε. Numerical evidence indicates that this is not the case
when the PRε boxes are quantum. A complementary impossibility theorem for the
quantum region is still due. Furthermore, it is desirable to find a proof that applies
to the quantum and the super-quantum region and is preferably based on a minimal
formal apparatus — according to the quote of Hermann Weyl in the beginning of
the introduction.

For general distillation protocols of quantum and super-quantum correlations,
using n PRε boxes as resource, a bound CHSH(P̂) ≤ 1 − θ(ε−n/2) can be derived
by considering the so-called Elitzur-Popescu-Rohlich decomposition [EPR92] of
the resource. The idea is to probabilistically decompose the resource into a non-
local part and a local part, i.e., a distribution P(ab | xy) satisfying (1.7), the weight
of the latter being maximal. Consequently, P̂ must be local and satisfy (1.7) with
the same probability weight. The drawback of this approach is that it cannot yield
stronger bounds; the weight of the local part of n PRε is exactly of the order of
θ(ε−n/2) [FHSW10].

We introduce a novel way to derive bounds on distillation protocols by regard-
ing nonlocality distillation as a cryptographic game. We crucially exploit another
fundamental feature of nonlocality, which we discuss in more detail in the second
part of the introduction, i.e., that nonlocality provides secrecy against an outside
third party. The stronger the nonlocality CHSH(P) of a box P(ab | xy), the more
constrained is the maximal predictive power an outside observer can have about the
outputs a and b. We construct adversaries who (statistically) attack the resource
boxes P of the distillation protocol and obtain a certain degree of knowledge about
the output a of the distillation protocol. Thus, we obtain bounds on the degree of
nonlocality CHSH(P̂) of the distillate.

So far, our method has not yielded optimal bounds, such as [BG14] in the super-
quantum region, but compared to other impossibility results [DW08], [BG14] our
argument is simpler: Our sole formal ingredient consists in extending the resource
distribution with an additional party. A main achievement of this thesis is to connect
the type of distillation protocol, specifically the type of interaction of the two play-
ers with the resources, with the constraints on the attack on the resources. It turns
out that a so-called time-ordered no-signalling adversary [AFTS12], who must re-
spect additional no-signalling constrains between the resource systems, limits the
degree of nonlocality generated by general distillation protocols. A stronger so-
called Alice-Bob no-signalling adversary, which does not have to respect these ad-
ditional constrains, limits the degree of nonlocality generated by non-adaptive distil-
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lation protocols, where Alice and Bob interact with each of their individual resource
boxes P independently. Through this stronger adversary we are able to show that for
infinitely many values of ε, non-adaptive distillation using PRε is virtually impos-
sible. The remainder of this thesis is dedicated to providing new constructions and
more intuition for especially the time-ordered no-signalling adversary, whose study
we would like to motivate now from a different, a cryptographic perspective.

1.2 Nonlocality and foundations of cryptography

In today’s age of information, where information can be of high value, we have
the need to privately communicate massive amounts of data all over the earth. In
classical cryptography Shannon’s converse theorem [Sha49] states that, if no fur-
ther assumptions are made, e.g., on the computational power of the adversary and
the complexity of calculating certain functions, then the length of the key used to
encode a message must be at least equal to the entropy of the message in order to
guarantee perfect secrecy. Thus, the parties who wish to communicate secretly nec-
essarily need a secure channel in advance in order to establish the secret key —
which requires a trusted physical carrier of information 2 and becomes in general
infeasible on the large scales of today’s communication.

Quantum theory in turn makes the problem of large scale secret key distribu-
tion feasible. Only a small shared secret is needed to authenticate a classical chan-
nel between the parties with a message authentication scheme. Most of the secure
communication channel can be replaced with a completely insecure quantum com-
munication channel, and thus untrusted physical carriers of (quantum) information
such as light-particles can be used to establish a long secret key. Such quantum
cryptography goes back to the celebrated seminal work by Bennett and Brassard
in 1984 [BB84]. They devised a protocol based on the exchange of single quan-
tum bits, e.g., encoded into the polarisation of single photons. The security of the
protocol depends on the following assumptions (see also Figure 1.2):

• (1) The laboratories of the legitimate partners do not leak any information
except for the communication specified by the protocol,

• (2) there is free randomness3 to which the partners locally have access,

2In order to secure communication via the red telephone during cold war times the United States
and the Soviet Union used diplomats with suitcases bearing magnetic tapes on which the secret keys
were stored.

3Again, we refer to the notion of free randomness used by Colbeck and Renner in [CR11].
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Alice’s 
Laboratory 

R(2)

D(4)

X

A

Bob’s 
Laboratory 

R(2)

D(4) B

Y

Eve

CC

QC QC

QT(3)
(1) (1)

Monday, 3 February, 14

Figure 1.2. Schematic setup of Quantum Key Distribution scenarios with assump-
tions (1)-(4). The boxes around the legitimate parties’ laboratories indicate pro-
tection against unwanted information leakage (1). The R’s are the sources of free
randomness (2) used as the inputs (x, y) to the devices D, which work according to
their specification (4). CC refers to a classical insecure (but authenticated) channel
to which the adversary Eve also has access. QC is a completely insecure quantum
channel with which Eve may interfere to an unspecified extent. The dotted box
indicates that the protocol takes place within the rules of quantum theory (3).

• (3) our world behaves according to quantum theory, and

• (4) the devices generate, and operate on, the specified quantum systems.

It is in the spirit of cryptography to ask for reducing the assumptions under which
security can be proven. In the physics community, quantum key distribution became
prominent and popular through the work of Artur Ekert [Eke91], who presented a
protocol based on entangled pairs of quantum bits, and on the phenomenon of non-
locality [Bel64] introduced in the previous section. The rationale of Ekert’s method
is as follows (see Figure 1.3): If, after exchange and measurement on the two parts
of the entangled pair, respectively, (1.7) is violated virtually up to the Cirelson’s
bound (1.9), then the shared state must be (close to) a maximally entangled pair
of quantum bits. Furthermore, (the completeness of) quantum theory implies that
the outcomes when such a singlet state is measured are (a) perfectly correlated with
each other yet at the same time (b) completely uncorrelated with any (classical or
quantum) information outside the two laboratories (and, hence, potentially under
an adversary’s control): the latter follows from a state violating maximally (1.7)
necessarily being pure.

Ekert’s result (and [MY98] when dealing with noise) has been a big step towards
device-independent security and the possibility of dropping assumption (4) (see Fig-
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Bell violation
QT��! ⇢AB ⇡ | i�AB (pure)

QT��! secrecy

Tuesday, 4 February, 14

Figure 1.3. Ekert’s reasoning: If a system violates the CHSH inequality virtually
up to Cirelson’s bound (1.9), then the framework of quantum theory implies that the
state of the system must be close to a maximally entangled and, hence, pure state,
a Bell state. The purity of the entangled state implies the secrecy of the local mea-
surement outcomes. This reasoning is strongly based on the formalism of quantum
theory.

ure 1.2). Such full device-independent security [ABG+07] was finally achieved by
Vazirani and Vidick [VV14] who devised a scheme, similar to Ekert’s, which is not
only robust against a certain level of noise, but also feasible in the terms of imple-
mentation. The key feature of their setup, also roughly depicted in Figure 1.2, is
that both parties can reuse a single (untrusted) device to produce the raw key. We
briefly sketch the rough structure of, and the intuition behind, their protocol (which
is typical to quantum key distribution protocols):

1. Repeatedly, the devices and the insecure quantum channel are used to pro-
duce, distribute and measure quantum systems, e.g., entangled photons, where
for the choice of local measurement settings the sources of randomness are
used. The values of the inputs xi and measurement results ai for Alice and,
respectively, yi and bi for Bob in the i-th run are recorded and form the set
M = {(ai, bi, xi, yi)}.

2. Then, in a parameter estimation phase, the parties compute an estimated
CHSH value for a single run on a representative sample: One party uses her
source of randomness to randomly choose a subset A of the measurement
statistics M whose size is a constant fraction of M. Then both parties pub-
licly compute the frequency of winning the game presented in the beginning
of Section 1.1 on this subset, i.e.,

CHSH =
|{i : ai ⊕ bi = xi · yi}|

|A|
. (1.12)

3. If the statistics are sufficiently non-local, i.e., if the value CHSH violates (1.7),
then the players can conclude that the complete set of outputs {(ai, bi)} of the
remaining statisticsM\A cannot have been predetermined by an inner mech-
anism (programmed by on outside party) of the devices (following the ar-
gumentation of Section 1.1). Similar to Ekert’s reasoning (see Figure 1.3),
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one can conclude that it must contain some partial secrecy against an outside
party.4 The parties then apply a privacy-amplification protocol5 using stan-
dard techniques [BBR88], [BBCM95], [HILL99] to extract an highly secure
final key. In a privacy-amplification protocol, e.g., Alice randomly chooses a
function from a specific set that maps the partially secure string of outputs {ai}

to a shorter, highly secure, string, which we may here assume to be a single
bit. She must communicate the choice of the function to Bob such that he
can apply it also to his string of outputs {bi} and, thus, this choice eventually
becomes also known to the adversary.

However, even Viddick and Vazirani’s advanced security proof, like Ekert’s, rests on
the validity of the entire Hilbert-space formalism of quantum theory. On the other
hand, if we believe that quantum theory is complete, then one of the central reasons
for this is, again, nonlocality because, as we argued in the previous section, values
displaying non-local correlations are incompatible with predetermined hidden vari-
ables if (2) holds. The question is, therefore, a natural one whether it is possible
to derive security of the final key directly and only from the (extent of) nonlocality
of the generated values (see Figure 1.4), together with the assumption (1), that no
hidden communication has taken place between the laboratories nor, subsequently,
to the adversary. Barrett, Hardy, and Kent [BHK05] have shown that in principle,
the answer is yes: They presented a protocol generating a secret key based only on

non-locality

Bell violation
QT��! ⇢AB ⇡ | i�AB (pure)

QT��! secrecy

Wednesday, 5 February, 14

Figure 1.4. Barrett, Hardy, and Kent’s reasoning: A Bell-inequality violation in-
dicates a non-local correlation that directly implies a constraint on the predictive
power of any external piece of information (such as, e.g., Eve’s entire knowledge)
about Alice and Bob’s measurement outcomes. This reasoning is completely inde-
pendent of quantum theory.

4This statement holds only in a sense of inference: If the protocol does not abort with non-
negligible probability, then the players can conclude that with high probability their remaining statis-
ticsM\A are at least partially secret.

5combined with an error-correction protocol to reduce the noise in the statistics.



12 1.2 Nonlocality and foundations of cryptography

assumptions (1) and (2) and not on the validity of quantum theory. Note that both
assumptions can (arguably) be also considered as necessary. If (1) does not hold, the
players do not have access to secure laboratories, then any secret key can eventually
leak to the adversary. If (2) does not hold, the players do not have access to private
randomness, then the whole protocol is deterministic from the point of view of the
adversary, and he can produce the key himself.

Barrett, Hardy, and Kent’s work was a proof of principle, their protocol was
neither efficient nor practical as it did not tolerate any noise. Several authors have
worked on developing protocols that are based on the violation of the CHSH in-
equality (1.7) (instead of the chained Bell inequality [BC89] used by Barrett, Hardy,
and Kent), like the above described protocol of Vazirani and Viddick, to which they
are very similar. They exploit a simple relation between the violation of the CHSH
inequality and the secrecy towards an outside party, i.e., if CHSH(P) = 1 − ε, then
any outside third party, bounded by quantum theory or not, can guess, e.g., the out-
put a of Alice at best with probability 1/2 + 2ε — which is a non-trivial bound as
soon as P violates (1.7), i.e., if ε < 1/4.

However, besides the no-signalling assumption between the parties, the proto-
cols’ security proofs must be based on the same condition within their laboratories
in order to perform the final privacy-amplification step. These no-signalling con-
ditions can only be guaranteed if both parties, Alice and Bob, produce their mea-
surement statisticsM = {(ai, bi, xi, yi)} in parallel, i.e., not by reusing each a single
device. Rather, each tuple (ai, bi, xi, yi) must be obtained from a separate device iso-
lated in a sub-laboratory for which assumption (1) must hold individually. In today’s
world it seems to take a large effort to completely secure a space for a laboratory
against unwanted information leakage.6 In their protocols, the number of required
sub-laboratories is proportional to the negative logarithm of the estimated ε. Thus,
on one hand their protocols prove that the implementation of secret-key distribution
based on only most minimalistic assumptions is possible, but on the other hand,
they become infeasible when high security is required since unwanted information
leakage has to be guaranteed for many sub-laboratories.

Hänggi, Renner, and Wolf showed that privacy amplification is impossible if
absolutely no additional no-signalling conditions are assumed than the one between
Alice and Bob [HRW13]. Yet, if Alice and Bob reuse their devices, then previously
obtained outputs cannot depend on future inputs, since the latter are assumed to be
chosen freely; the corresponding additional conditions are termed time-ordered no-
signalling (TONS) conditions. Arnon-Friedman and Ta-Shma showed that under

6In the course of the Snowdon affair the German government, an entity of considerable resources,
had to acknowledge that not even its chancellery was protected against unwanted information leak-
age.
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these conditions, super-linear privacy amplification is impossible [AFTS12]: If n is
the length of the input to the privacy-amplification protocol, i.e., the size of the set
M\A, then the adversary’s knowledge about the output is at least of order Ω(1/n).
No stronger lower bounds on the adversary, which we simply call a TONS adversary
if he is only bound by time-ordered no-signalling conditions, are known, and linear
privacy amplification based on TONS conditions remains possible. With today’s
technology, quantum systems, such as light-particles, can be created, sent over large
distances, and measured within fractions of a second. Therefore, it seems feasible to
perform an arbitrary number of repetitions of quantum measurements and to produce
a large set of measurement statisticsM in the above described setup of Vazirani and
Viddick in a short time. If linear privacy amplification based on TONS conditions
can be conducted then one could possibly devise a feasible key distribution protocol
based only on the minimal conditions (1) and (2).

In the main part of this thesis, Chapter 3, we inspect the power of a TONS adver-
sary. We provide some evidence that there is no trivial connection between privacy
amplification based on TONS conditions and a comparable scenario of classical
privacy amplification where the privacy-amplification function is chosen determin-
istically. We show when intuitive reductions from the former to the latter case are
possible, and why they are in general not. The key contribution of this work is a
novel way to construct TONS adversaries: We introduce a set of purely classical
games that enables us to analyse the adversaries possibilities with techniques from
the field of analysis of Boolean functions. This permits to derive a novel lower
bound of Ω(log(n)/n) on the adversary’s knowledge if monotonic functions are used
for privacy amplification. Furthermore, finding a constant lower bound on the ad-
versaries knowledge on random functions we conclude that almost all functions are
useless for TONS privacy amplification. The class of attacks generated by our tech-
nique is considerably more powerful than the one presented by Arnon-Friedman and
Ta-Shma [AFTS12], as we will show by the example of privacy amplification with
majority functions: their attack provides with only a lower bound of Ω(1/

√
n) while

we obtain a constant lower bound on the adversaries knowledge (independent of n),
which implies that privacy amplification cannot be achieved by such a function. We
also provide evidence that the class of attacks our construction yields is sufficiently
general to show the impossibility of privacy amplification based (only) on TONS
conditions — if that truly holds: We present a completely analogous construction
for setting when only no-signalling conditions between Alice and Bob are assumed
and retrieve the result from [HRW13] that privacy amplification is impossible in this
scenario.

Even though no stronger general lower bounds on the adversaries knowledge
could be derived, the author conjectures that privacy amplification based only on
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time-ordered no-signalling conditions is impossible.



Chapter 2

Preliminaries

2.1 Notation

We refer to a system as a black box with an interface consisting of an input and
an output. If a system A is shared between m parties, each holding n marginal
systems, then we denote the interface of the i-th marginal system held by party j
by A j

i . In the case of three parties we identify the parties with Alice, Bob and Eve
(A1 = A, A2 = B, A3 = E). Usually we denote sets in the font S, but we also use the
shorthand notation [n] := {1, 2, ..., n} for the set of the first n natural numbers. We
also use contracted indices and define the shorthand notations A≤i := A1A2 . . . Ai or
AS := Ai1 Ai2 · · · Ais for S ⊆ [n] and s := |S|. Also for summations we use contracted
notation, e.g.,

∑
i∈S denotes summation over the set of indices {i1, i2, ..., is} = S. The

complement set of S is denoted S, when S ⊆ [n] then this complement is taken with
respect to the set [n], i.e., S := [n]/S.

We identify boxes or systems with conditional probability distributions P(ab | xy).
For two systems A and B with inputs x, y ∈ X×Y and outputs a, b ∈ A×B, P(ab | xy)
is the probability of obtaining output (a, b) if the inputs are (x, y). The whole table
of probabilities P(ab | xy) specifies thus the complete input-output behaviour of the
systems A and B. When considering a more complicated event, e.g., f (a) = e on the
outputs of a system AE, we define P( f (a) = e) =

∑
a,e: f (a)=e P(ae).

2.2 No-signalling conditions

Intuitively, no-signalling conditions between different systems simply mean that the
input one party inserts into her system does not affect the output the other party
obtains from his system;

15
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Definition 1 (m-Party no-signalling). An m-system box

P(a1 . . . am | x1 . . . xm)

is m-party no-signalling if no subset of parties, I1 ⊆ [m], can signal to any other
(disjoint) subset of parties. Defining I2 to be the complementary set to I1 we have
formally

∑
aI1

P(aI1aI2 | xI1 xI2) =
∑
aI1

P(aI1aI2 | x′I1 xI2) ∀I1, aI2 , xI1 , x′I1 , xI2 . (2.1)

We will also introduce another short-hand notation and write AI1
ns
→ AI2 if the sys-

tems AI1 does not signal to the systems AI2 , i.e., they satisfy (2.1).

Definition 2 (Marginal system). When (2.1) holds, it is possible to define a valid
marginal system on the systems AI2 that is independent of the inputs chosen by the
parties in I1. In that case, we denote the marginal box simply as P(aI2 | xI2).

Definition 3 (No-Signalling extension). A no-signalling extension of a given system
A (possibly consisting of arbitrarily many subsystems), identified with P(a | x), is
any joint system AE, identified with P′(ae | xu), such that A

ns
↔ E and the marginals

on A coïncide, i.e., P′(a | x) = P(a | x).

Definition 4 (ABNS). A (2n + 1)-system

P(a≤nb≤ne | x≤ny≤nu)

is Alice-Bob no-signalling (ABNS) if, for the grouping of systems

A = A1 ∪ A2 ∪ · · · ∪ An and

B = B1 ∪ B2 ∪ · · · ∪ Bn , (2.2)

the systems ABE is 3-party no-signalling.

Note that in an ABNS system P(a≤nb≤ne | x≤ny≤nu), a bit ai may not only depend
on the input xi but can also depend on all other inputs x j, j , i. However, if Alice
and Bob observe the systems AiBi consecutively as results of measurements, where
the choices of measurement settings xi and yi are free, all previous outcomes a<i and
b<i must be independent of xi and yi, as, otherwise, xi and yi could be predicted. This
motivates a stronger set of no-signalling constraints.
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Figure 2.1. Schematic representation of various no-signalling conditions: Alice and
Bob each hold n = 5 marginal systems, Eve a single one. Allowed directions of
signalling are marked with arrows, forbidden directions of signalling with crossed
arrows. On the top left are Alice-Bob no-signalling (ABNS) conditions depicted, see
Definition 4, and on the top right fully no-signalling conditions, see Definition 7. In
the bottom, we have two examples of time-ordered no-signalling conditions (TONS)
depicted. On the left we chose (iA, iB, iE) = (2, 3, 0) for an explicit TONS condition.
If such a condition is fulfilled, the joint output-distribution of the systems above the
dotted lines is independent of the inputs to the systems below the dotted lines. On the
right, we chose (iA, iB, iE) = (2, 2, 1) for an explicit dynamic TONS condition. Here
the joint distribution of the union of systems inside the dotted lines is independent
of the inputs to the systems outside the dotted lines.
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Definition 5 (TONS). A (2n + 1)-system

P(a≤nb≤ne | x≤ny≤nu)

is time-ordered no-signalling (TONS) if no subset of marginal systems can signal to
systems outside its causal future. We define A≤i, with 0 ≤ i ≤ n, to be the union
of the first i marginal systems held by Alice, and A>i is the union of the last n − i
marginal systems held by Alice (and similarly for Bob an Eve). Time-ordered no-
signalling is equivalent to any union of past marginal systems A≤i ∪ B≤ j ∪ E≤k, with
k ∈ {0, 1}, forming a valid marginal (see Figure 2.1). Formally, this translates to the
equations

∑
a>ib> je≤k

P(a≤ia>ib≤ jb> je≤k | x≤ix>iy≤ jy> ju>k)

=
∑

a>ib> je≤k

P(a≤ia>ib≤ jb> je≤k | x≤ix′>iy≤ jy′> ju
′
>k)

∀(a≤i, b≤ j, x≤i, y≤ j, e≤k), (x>i, y> j, u>k), (x′>i, y
′
> j, u

′
>k), 0 ≤ i, j ≤ n, k ∈ {0, 1} . (2.3)

Let us now consider a generalisation of the TONS conditions which we call
dynamic TONS conditions. We relax the condition that Alice and Bob use their
n systems in standard order 1, 2, ..., n but may use them in any order. This or-
der may depend also on previously obtained outputs, i.e., it may vary dynami-
cally. We denote ji (ki) the next box Alice (Bob) uses, i.e., ji = ji(a j1 , ..., a ji−1)(
ki = ki(bk1 , ..., bki−1)

)
. Following the short-hand notation introduced in Definition 5,

we will use the contracted indices j≤i := ( j1, ..., ji) and a j≤i = (a j1 , a j2 , ..., a ji). There-
fore, a dynamic order is uniquely defined by the functions { j1, j2(a j1), ..., jn(a j<n)}
and {k1, k2(y, bk1), ..., kn(bk<n)}. For simplicity, we will simply write { ji} and {ki} to
indicate these two sets.

Definition 6 (Dynamic TONS). Let { ji} and {ki} correspond to an adaptively chosen
order; A (2n + 1)-system

P(a≤nb≤ne | x≤ny≤nu)

is dynamic time-ordered no-signalling if no dynamically chosen subset of marginal
systems can signal to marginal systems in its causal past. We define A j

≤iA
, with

0 ≤ iA ≤ n, to be the union of the first iA adaptively chosen marginal systems used
by Alice, i.e., the systems with indices j1, j2(a j1), ..., jiA(a j<iA

) and A j>iA
is the union

of the last n − iA adaptively chosen marginal systems held by Alice (and similarly
for Bob). Then it must hold that
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∑
a j>iA

bk>iB
e≤l

P(a j≤iA
a j>iA

bk≤iB
bk>iB

e≤l | x j≤iA
x j>iA

yk≤iB
yk>iB

u>l)

=
∑

a j>iA
bk>iB

e≤l

P(a j≤iA
a j>iA

bk≤iB
bk>iB

e≤l | x j≤iA
x′j>iA

yk≤iB
y′k>iB

u′>l)

∀(a j≤iA
, bk≤iB

, x j≤iA
, yk≤iA

e≤l),

(x j>iA
, yk>iB

, u≤l), (x′j>iA
, y′k>iB

u′>l), 0 ≤ iA, iB ≤ n, l ∈ {0, 1} . (2.4)

Definition 7 (Fully NS). A (2n + 1)-system

P(a≤nb≤ne | x≤ny≤nu)

is fully no-signalling, exactly if it is (2n + 1)-party no-signalling for the parties
A1A2...AnB1B2...BnE.

It is easy to see that Definition 4, 5, 6, and 7 imply a hierarchy of no-signalling
constraints; if a (2n + 1)-system P(a≤nb≤n | x≤ny≤n) is fully no-signalling, then it
is dynamic TONS as well as ABNS. Similarly, any (dynamic) TONS system is
ABNS. Note that all no-signalling conditions are linear equations in the probabil-
ities P(abe | xyu). If we interpret the box P as a vector with entries P(abe | xyu),
we can identify a set of equations with a matrix M and a vector V. If P satisfies
the set of equations, then MP = V. Consequently, if a no-signalling condition is
fulfilled for two boxes P1 and P2, then any convex combination of the two boxes
P = pP1 + (1 − p)P2 satisfies the same no-signalling condition,

MP = M(pP1 + (1 − p)P2)

= pMP1 + (1 − p)MP2

= pV + (1 − p)V = V . (2.5)

2.3 Some explicit no-signalling distributions

In this section we will simply define explicit no-signalling distributions that we make
use of in the remainder of the text.

• Denote Da′(a | x) as the box that deterministically outputs the bit a′

Da′(a | x) :=
{

1 if a = a′

0 otherwise .
(2.6)
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• Denote U(a | x) a box that outputs a uniformly random element of the output
alphabetA

U(a | x) :=
1
|A|
∀a, x . (2.7)

• Denote SR(ab | xy), with A,B,X,Y = {0, 1}, a box that outputs a uniformly
random shared bit

SR(ab | xy) :=
{ 1

2 if a ⊕ b = 0
0 otherwise .

(2.8)

• For completion, denote PR(ab | xy), with A,B,X,Y = {0, 1}, as a box with
probabilities

PR(ab | xy) :=
{ 1

2 if a ⊕ b = x · y
0 otherwise .

(2.9)

• Denote Cδ, called correlated boxes, as

Cδ := δPR + (1 − δ) SR . (2.10)

• Denote V(ab | xy), with A = {0, 1} and unspecified alphabets B, X, and Y,
as an arbitrary box that satisfies the no-signalling conditions (2.1) and has a
uniform marginal on A, ∑

b

V(ab | xy) =
1
2
∀a, x, y . (2.11)

An example for this type of boxes is the PR box, or the boxes correspond-
ing to the chained Bell inequalities [BC89] considered in [AFTS12], but also,
the system B is not specified and can be composed of an arbitrary number
of subsystems, boxes corresponding to the Guess Your Neighbours Input-
game [ABB+10].

• Denote the noisy version Pε(ab | xy) of an arbitrary box P(ab | xy) as the box
with probabilities 1

Pε(ab | xy) := (1 − 2ε) P(ab | xy) + 2εU(ab | xy) . (2.12)

1We chose this decomposition to be conform with the usual definition of PRε when P corresponds
to the PR box introduced in the introduction and originally by Popescu and Rohrlich in [PR94].
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Note that (2.6) and (2.7) trivially imply the relation

1
|A|

∑
a′∈A

Da′(a | x) = U(a | x) , (2.13)

that (2.7) implies a factorisation property for a combined system AB

U(ab | xy) = U(a | x) U(b | y) , (2.14)

and that both marginal systems of PR(ab | xy) are uniform∑
a

PR(ab | xy) =
1
2

=
∑

b

PR(ab | xy) . (2.15)
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Chapter 3

No-Signalling Attacks

We explore the power of a no-signalling adversary, in particular, the time-ordered
no-signalling (TONS) adversary. In Section 3.1, we formally define a no-signalling
adversary, then, through an example of an attack on a single PRε(ab | xy) we pro-
vide intuition of the principles behind a no-signalling attack. We close Section 3.1
by illustrating the connection between nonlocality and no-signalling attacks and the
limit the former puts on the latter. In Section 3.2, we introduce no-signalling pri-
vacy amplification and restate previous results regarding attacks on no-signalling
privacy amplification. In Section 3.3, we first make a reference to a somewhat com-
parable task, deterministic privacy amplification on classical so-called ε-Santha-
Vazirani distributions. In this scenario powerful attacks on privacy amplification
exist, but we show that these attacks cannot be straightforwardly carried over into
its no-signalling counterpart. In Section 3.4, we first introduce a novel way how to
construct TONS attacks, which is a central result of this work, via Theorem 3.4.2
and Theorem 3.4.3. The construction is based on a classical privacy-amplification
game that shows strong similarities to privacy amplification on ε-Santha-Vazirani
distributions. These similarities and further numerical evidence lead us to believe
that it is possible to use our construction to extend ε-Santha-Vazirani distributions
to TONS attacks, see Conjecture 3.4.1. Then we show, as intuition suspects, that
unbalanced functions do not provide more secrecy against a TONS adversary than
balanced functions. In Section 3.5, we analyse our classical privacy-amplification
game by means of Boolean analysis. First we show how to exclude the possibility
of TONS privacy amplification by linear hashing (which is possible in the classical,
quantum, and fully no-signalling case). We extend this result to almost all functions,
by showing impossibility of TONS privacy amplification using random functions in
Section 3.5.2. We show that our framework comprises previously known TONS
attacks on privacy-amplification protocols [AFTS12], we call them prefix-code at-

23
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tacks, and derive a stronger lower bound on the adversaries knowledge for these
attacks for monotonic privacy-amplification functions. Finally, on the example of
the majority functions we show that our technique can yield much stronger attacks
than prefix-code attacks with a relative increase of knowledge of θ(

√
n). In Section

3.6, we show how the TONS attacks constructed by our method can be generalised
to dynamic TONS attacks. This will be crucial for Chapter 4, where we use dynamic
TONS attacks for deriving bounds on general nonlocality distillation protocols. In
Section 3.7, we turn to a stronger adversary, the Alice-Bob no-signalling (ABNS)
adversary — although it was already shown that ABNS privacy amplification is im-
possible when the players use PRε(ab | xy) [HRW13]. We derive a construction of
ABNS attacks via a classical privacy-amplification game, analogous to our construc-
tion of TONS attacks, and compare the two corresponding classical games. Then
we show that this construction of ABNS attacks retrieves the strong impossibility
results from [HRW13], which is an indication that if privacy amplification is indeed
impossible (as conjectured by the author), then our construction of TONS attacks
via a classical privacy-amplification game is also powerful enough to encapsulate
this impossibility result. Our construction of TONS attacks and ABNS attacks on
PRε(ab | xy) boxes via classical privacy-amplification games, played only on the
marginal systems of Alice and Eve, also allows a straightforward generalisation to
attacks on Vε(ab | xy), where the B system can be arbitrary, in Section 3.8.

3.1 The no-signalling adversary and nonlocality

3.1.1 Definition of a no-signalling adversary

Assume that Alice and Bob hold a box P(a≤nb≤n | x≤ny≤n) and Alice outputs a Boolean
function f (a≤n). To analyse the privacy of such a bit f (a≤n) against a no-signalling
adversary, one considers, in analogy to the quantum case, an adversary Eve that
holds a “no-signalling purifying marginal system” E with input U. The adversary
is described by a no-signalling extension, see Definition 3, A≤nB≤nE of the systems
A≤nB≤n where the type of no-signalling adversary is specified by the no-signalling
conditions.

Definition 8 (No-signalling attack). The box

P′(a≤nb≤ne | x≤ny≤nu)

is a no-signalling attack on in the box P(a≤nb≤n | x≤ny≤n) if P′(a≤nb≤ne | x≤ny≤nu) is
a no-signalling extension of P(a≤nb≤n | x≤ny≤n) and P′(a≤nb≤n | ex≤ny≤nu) satisfies a
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certain set of no-signalling conditions. Here, these conditions are either according
to Definitions 4, 5, 6, or 7 defining an ABNS-attack, TONS or dynamic TONS-
attack, or a fully NS-attack, respectively. If n = 1 and P′(abe | xyu) is no-signalling
between Alice and Bob, we will just speak of a no-signalling attack.

Note that, e.g., a TONS attack on a system P(a≤nb≤n | x≤ny≤n) always implies
an ABNS attack on the system, since the TONS conditions imply the ABNS con-
ditions. Obviously, the more strict no-signalling conditions are, the more con-
strained the adversary is. In the no-signalling attacks that we present the system
E has a well-defined marginal distribution P(e | u) always by construction, which
implies A≤nB≤n

ns
→ E. The requirement that P′(a≤nb≤ne | x≤ny≤nu) is an extension of

P(a≤nb≤n | x≤ny≤n) implies that∑
e

P′(a≤nb≤ne | x≤ny≤nu) = P(a≤nb≤n | x≤ny≤n) ∀a≤n, b≤n, x≤n, y≤n, u , (3.1)

and, therefore, automatically that E
ns
→ A≤nB≤n. If the system P(a≤nb≤n | x≤ny≤n)

itself already satisfies the respective no-signalling conditions 4, 5, 6, or 7, then
the respective conditions only need to be proven on the conditional distribution
P′(a≤nb≤n | ex≤ny≤nu), e.g., for the TONS conditions this is explicitly∑

a>ib> j

P(a≤ia>ib≤ jb> j | ex≤ix>iy≤ jy> ju)

=
∑

a>ib> j

P(a≤ia>ib≤ jb> j | ex≤ix′>iy≤ jy′> ju)

∀(a≤i, b≤ j, x≤i, y≤ j, u), (x>i, y> j), (x′>i, y
′
> j), 0 ≤ i, j ≤ n , (3.2)

and for the ABNS conditions when we restrict i, j ∈ {0, n}.
For no-signalling privacy amplification, we restrict Eve to insert always the same

input U = u and, for simplicity, suppress her input completely and consider as
adversary the extension P′(a≤nb≤ne | x≤ny≤n), see Section 3.2.

3.1.2 Example - attacking a single PRε

Let us assume Alice and Bob share a PRε(ab | xy) box. A no-signalling adversary
Eve wants to guess the output a of Alice, without ever knowing the inputs (x, y) of
Alice and Bob. Our attack, a distribution P(abe | xy) (as usually in the following,
we restrict Eve to a single possible input) on the (binary) systems ABE, is described
by a marginal distribution on Eve’s system and a distribution on Alice’s and Bob’s
marginal systems, conditioned on the output of Eve:
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P(e) =
1
2

and (3.3)

P(ab | exy) = (1 − 2ε) PR(ab | xy) + 2εDe(a | x)U(b | y) . (3.4)

In order to show that the construction (3.3) and (3.4) is a valid no-signalling
attack we need to show two properties; first that the box P(abe | xy) is an extension
of PRε(ab | xy); second, that P(ab | exy) is no-signalling between Alice and Bob.
Note that AB

ns
→ E follows trivially by construction (3.3). For the first part, we

obtain

∑
e

P(abe | xy) =
∑

e

P(e) P(ab | exy)

=
1
2
(
(1 − 2ε) PR(ab | xy) + 2εD0(a | x) U(b | y)

)
+

1
2
(
(1 − 2ε) PR(ab | xy) + 2εD1(a | x) U(b | y)

)
= (1 − 2ε) PR(ab | xy) + ε

(
D0(a | x) + D1(a | x)

)
U(b | y)

= (1 − 2ε) PR(ab | xy) + 2εU(a | x) U(b | y)

= (1 − 2ε) PR(ab | xy) + 2εU(ab | xy)

= PRε(ab | xy) , (3.5)

using (3.3) and the definitions of PRε(ab | xy), U(a | x) and Da′(a | x) boxes in Sec-
tion 2.3. For the second part, note that P(e) is by construction independent of (x, y).
It remains to show that P(ab | exy) is no-signalling between Alice and Bob, i.e., it
has well-defined marginal distributions P(a | ex) and P(b | ey). We have

∑
b

P(ab | exy) =
∑

b

(
(1 − 2ε) PR(ab | xy) + 2εDe(a | x)U(b | y)

)
= (1 − 2ε)

1
2

+ 2ε δ(e, a)

=
1
2

+ ε · (−1)e⊕a

=: P(a | ex) , (3.6)
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and ∑
a

P(ab | exy) =
∑

a

(
(1 − 2ε) PR(ab | xy) + 2εDe(a | x)U(b | y)

)
= (1 − 2ε)

1
2

+ 2ε
1
2

=
1
2

=: P(b | ey) .

Furthermore, the attack yields

P(a = e | x) =
∑

e

P(e)P(a = e | ex)

=
1
2
(
P(a = 0 | e = 0, x) + P(a = 1 | e = 1, x)

)
(3.6)
=

1
2

+ ε ∀x . (3.7)

In Section 3.1.3 we prove Theorem 3.1.3, which states that the construction (3.3)
and (3.4) is also the optimal attack when the inputs (x, y) remain unknown to the
adversary.

3.1.3 Limits of no-signalling attacks from nonlocality

In this section we turn around and prove upper bounds on the degree of knowl-
edge that an adversary can obtain as a function of the nonlocality the box P(ab | xy)
displays. We will now prove a bound on the no-signalling adversary’s guessing
probability of Alice’s output bit of a box P with CHSH(P) = 1 − ε (note that
CHSH(PRε) = 1 − ε ). This can be seen as a quantitative version of Bell’s theo-
rem, relating the strength of nonlocality to the maximal predictive power of a hid-
den variable (in the hand of Eve) on the outcome of the measurement. This feature
is not only at the heart of secret-key-distribution protocols, but also randomness-
expansion- and randomness-amplification protocols based only on no-signalling as-
sumptions [Col06], [PAM+10], [CR12], [GMDLT+13].

Lemma 3.1.1. If CHSH(P) ≥ 1−ε, then the guessing probability of a no-signalling
adversary, who eventually learns x, of the bit a for any input x is bounded by 1

2 + 2ε.
Formally, for any box P(abe | xy) which is fully no-signalling between Alice, Bob
and Eve and satisfies

CHSH

∑
e

P(abe | xy)

 = 1 − ε , (3.8)
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it holds that ∑
e

P(e) max
a′

[
P(a = a′ | ex)

]
≤

1
2

+ 2ε ∀x . (3.9)

The proof is essentially a more explicit version of the one in [HRW13] and only
added here for self-containedness.

Proof. We will first show that, for any no-signalling box P(ab | xy), a, b, x, y ∈ {0, 1}
with

εxy := 1 − P(a ⊕ b = xy | xy) , (3.10)

it follows that

P(a | x) ≤
1
2

+
1
2

(ε00 + ε01 + ε10 + ε11) ∀a, x . (3.11)

By the definition of the CHSH value, see (1.2), we have

CHSH(P) = 1 −
1
4

(ε00 − ε01 − ε10 − ε11) , (3.12)

we argue that Lemma 3.1.1 follows by linearity for any box P′(abe | xy) that satisfies
(3.8).
Let P(a = 0 | x = 0) = q. Then it follows with Bayes’ rule and no-signalling that

P(a = 1, b = 1 | x = 0, y = 0) = P(a = 1 | x = 0) · P(b = 1 | a = 1, x = 0, y = 0)

≤ P(a = 1 | x = 0)

≤ 1 − q , (3.13)

as the probability P(b = 1 | a = 1, x = 0, y = 0) is between 0 and 1. By (3.10) we
have P(a = b | x = 0, y = 0) = (1 − ε00) and, therefore,

P(a = 0, b = 0 | x = 0, y = 0) = 1 − ε00 − P(a = 1, b = 1 | x = 0, y = 0)

≥ q − ε00

⇒ P(b = 0 | y = 0) = P(a = 0, b = 0 | x = 0, y = 0)

+ P(a = 1, b = 0 | x = 0, y = 0)

≥ P(a = 0, b = 0 | x = 0, y = 0)

≥ q − ε00 . (3.14)
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Repeating the same steps for y = 1 we obtain the bound P(b = 0 | y = 1) ≥ q − ε01

(note that for the existence of the marginal P(b | y) we implicitly assume A
ns
↔ B).

Using

P(b = 1 | y = 0) = 1 − P(b = 0 | y = 0)

≤ 1 − q + ε00 , (3.15)

and (3.10), we obtain

P(a = 0, b = 0 | x = 1, y = 0) = 1 − ε10 − P(a = 1, b = 1 | x = 1, y = 0)

≥ 1 − ε10 − P(b = 1 | y = 0)

≥ 1 − ε10 − 1 + q − ε00

= q − ε00 − ε10

⇒ P(a = 0 | x = 1) ≥ q − ε00 − ε10 . (3.16)

Now we combine

P(b = 1 | y = 1) = 1 − P(b = 0 | y = 1) ≤ 1 − q + ε01 and (3.17)

P(a = 1 | x = 1) = 1 − P(a = 0 | x = 1) ≤ 1 − q + ε00 + ε10 , (3.18)

to conclude

1 − ε11 = P(a = 0, b = 1 | x = 1, y = 1) + P(a = 1, b = 0 | x = 1, y = 1)

≤ P(b = 1 | y = 1) + P(a = 1 | x = 1)

≤ 1 − q + ε01 + 1 − q + ε00 + ε10

⇒ q ≤
1
2

(1 + ε00 + ε10 + ε01 + ε11) . (3.19)

The same bound can be derived by analogous reasoning for the other entries P(a | x).
We apply the above reasoning to extensions of P(ab | xy):

Let E be a “no-signalling purifying system” to P(ab | xy), i.e., a P(abe | xy) box
that is no-signalling between A, B, and E and satisfies∑

e

P(e) P(ab | xye) = P(ab | xy) . (3.20)

Furthermore, let us define

εxye := 1 − P(a ⊕ b = x · y | exy) and (3.21)

εe :=
1
4

∑
xy

εxye . (3.22)
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From the discussion above it follows for P(ab | exy) that P(a | ex) ≤ 1/2 + 2εe. In
addition, from (3.20) if follows that

∑
e P(e) εe = ε since for CHSH(P) = 1 − ε it

follows
∑

x,y εxy = 4ε. This implies∑
e

P(e) max
a

[
P(a | ex)

]
≤

1
2

+ 2ε . (3.23)

which completes the proof. �

The contrapositive of Lemma 3.1.1 is the key tool we use in Chapter 4 to derive
bounds on distillation protocols that produce a distribution P(ab | xy).

Corollary 3.1.2. Let P′(abe | xy) be a no-signalling attack on P(ab | xy), i.e.,

1.
∑

e P′(abe | xy) = P(ab | xy) ,

2. P(abe | xy) = P(e) P(ab | exy) where P(ab | exy) is no-signalling.

If there exists an x such that P′(a = e | x) ≥ 1/2 + 2ε then CHSH(P) ≤ 1 − ε.

Note that, in (quantum) key distribution protocols it is usually assumed that (at
least one of) the inputs x and y become known to the adversary. Without going
into details, in the case of randomness amplification and randomness expansion
protocols this can, but not necessarily have to be, the case (see, e.g., [CR12] and
[GMDLT+13]). Hence, we would like to finalise with an analogue to Lemma 3.1.1
for the case that the input x of Alice remains unknown to Eve but this time Alice
and Bob share a PRε box.

Theorem 3.1.3. Let Alice and Bob share a box PRε(ab | xy). Then the guessing
probability, uniformly averaged over the the inputs x, of a no-signalling adversary
of the bit a is bounded by 1/2 + ε. Formally, we have for any no-signalling attack
P(abe | xy) on PRε(ab | xy) that∑

e

P(e) max
a′

[
1
2

P(a = a′ | e, x = 0) +
1
2

P(a = a′ | e, x = 1)
]
≤

1
2

+ ε . (3.24)

Proof. The proof is similar to the proof of the previous Lemma 3.1.1. Assume
that P(a = 0 | x = 0) = q. We show that, for any no-signalling box P(ab | xy),
a, b, x, y ∈ {0, 1} with εxy := 1 − P(a = b ⊕ xy | xy), it follows that

1
2

P(a = a′ | x = 0) +
1
2

P(a = a′ | x = 1) ≤
1
2

(1 + ε01 + ε11) . (3.25)
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With (3.21) and ∑
e

P(e) P(ab | exy) = PRε(ab | xy) , (3.26)

it follows that ∑
e

P(e)εxye = ε ∀x, y, (3.27)

and, therefore, (3.24). Analogous to the discussion around (3.13) and (3.14), we
argue that

P(a = 0 | x = 0) = q

⇒ P(b = 0 | y = 1) ≥ q − ε01 . (3.28)

Then we proceed with the simple implications

P(b = 1 | y = 1) ≤ 1 − q + ε01

⇒ P(a = 0, b = 1 | x = 1, y = 1) ≤ 1 − q + ε01

(3.10)
⇒ P(a = 1, b = 0 | x = 1, y = 1) ≥ 1 − ε11 − (1 − q + ε01)

= q − ε01 − ε11

⇒ P(a = 1 | x = 1) ≥ q − ε01 − ε11

⇒ P(a = 0 | x = 1) ≤ 1 − q + ε01 + ε11

⇒
1
2
(
P(a = 0 | x = 0) + P(a = 0 | x = 1)

)
≤

1
2

(1 + ε01 + ε11) . (3.29)

Similarly, we obtain

1
2
(
P(a = 1 | x = 0) + P(a = 1 | x = 1)

)
≤

1
2

(1 + ε01 + ε11) , (3.30)

which completes the proof. �

3.2 No-signalling attacks on privacy-amplification
protocols

3.2.1 The task of privacy amplification

The task of privacy amplification can be seen as follows. Suppose an adversary hold-
ing some system E can guess a single bit ai with probability 1/2+2ε, but a complete
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a1a2...an eraw secret

rrandom seed fr

condensed secret fr(a1a2...an) = ss

strong partial information

practically no 
information

gr

e0 = gr(e)

local computation

Figure 3.1. Classical privacy amplification: Alice has a string of n bits a1a2...an

about which adversary Eve has some partial information in form of the variable
e: Eve can guess parts of the string a1a2...an, e.g., a single bit ai, with probability
1/2+2ε, but the probability to guess the whole string a1a2...an is exponentially small.
If she uses a random seed to choose a function randomly from a suitable set, Alice
can amplify the partial privacy of the string a1a2...an and condense it into a secret
bit s: even the combined knowledge about the string a1a2...an and the random seed
(and, therefore, also about the function Alice uses) does not allow her to compute a
random variable e′ that contains more than a negligible amount of information about
s = f r(a1a2...an).

bit-string a1 . . . an with exponentially small probability, let us say with probability
at most (1/2 + 2ε)n. Usually, in a privacy-amplification protocol (see Figure 3.1)
one applies a randomly chosen function f r, where r denotes the random choice,
to obtain a shorter bit-string s = f r(a1 . . . an) (think of a single bit) that cannot be
guessed except with probability close to 1/2. It is known that if the adversary E is
governed by classical or quantum theory, it is possible to generate a single bit s that
is O((1/2 + 2ε)n/2) (i.e., exponentially) -close to uniform if the function f r is chosen
uniformly amongst all linear functions [BBR88], [BBCM95], [HILL99], [Ren08].
Observe that it is possible to make this security parameter as small as we wish for
any ε < 1/4 by increasing n.

Here we consider the same scenario with the system E being limited only by no-
signalling assumptions. If a no-signalling adversary Eve attacks a single PRε(ab | xy)
box, the probability to guess the output a of Alice is at best 1/2 + 2ε, see Lemma
3.1.1. If a no-signalling adversary Eve attacks PR⊗n

ε (a≤nb≤n | x≤ny≤n), then her guess-
ing probability for the complete string a1 . . . an is exponentially small, i.e., of or-
der O((1/2 + 2ε)n/2) (we ignore a polynomial prefactor here). This follows, even
for an ABNS adversary, from a threshold theorem on the parallel repetition of
no-signalling games [AFRV14]. We study privacy amplification in the context of



33 3.2 No-signalling attacks on privacy-amplification protocols

secret-key distribution, hence Alice must communicate her choice r of the privacy-
amplification function eventually to Bob such that they can arrive at a shared secret
key in the end of the protocol. Since we assume that Eve can wiretap the classical
communication between Alice and Bob and learn the value r, she can wait to use
her system E until that happens and choose her input as a function of r, u(r), accord-
ingly. Her actions are completely specified by the box P(a≤nb≤ne | x≤ny≤nu), which
is only constrained by the no-signalling conditions: we can assume without loss of
generality that any potential classical (or quantum) processing is encoded into the
inner workings of the box. For any set of functions F , with |F | = r, we are inter-
ested in a lower bound on the maximal probability P( f r(a≤n) = e | x≤n, u(r)). One
condition on a no-signalling attack is that the systems A≤nB≤n held by Alice and Bob
have the marginal distribution PR⊗n

ε (a≤nb≤n | x≤ny≤n) that, in particular, must be inde-
pendent of u(r). Hence, each choice of r can be investigated independently and we
can confine our analysis on attacks P(a≤nb≤ne | x≤ny≤n) on a deterministically chosen
function f (a≤n) where E has no input.

3.2.2 Previous results on no-signalling privacy amplification

In this section we present the results of Hänggi et al. about privacy amplification
against an ABNS and a fully no-signalling adversary, as well as the result from
Arnon-Friedman et al. against a TONS adversary.

Theorem 3.2.1. [HRW13] Assume that Alice and Bob share PR⊗n
ε (a≤nb≤n | x≤ny≤n).

Then, for any function f (a≤n), there exists an ABNS-attack P(a≤nb≤ne | x≤ny≤n) on the
boxes PR⊗n

ε (a≤nb≤n | x≤ny≤n), such that

P( f (a≤n) = e | x) ≥
1
2

+
−1 +

√
1 + 64ε2

32ε
≥

1
2

+
ε

2
. (3.31)

Thus, (more than constant) privacy amplification for PRε against an ABNS-
adversary is impossible. On the other hand, for a no-signalling adversary which is
much more constrained, i.e., the fully no-signalling-adversary, privacy amplifica-
tion is possible. If we assume that the systems A1A2...AnB1...Bn must be 2n-party
no-signalling, see (2.1), then privacy amplification becomes possible even using a
certain deterministic function, the parity function.

Theorem 3.2.2. [HRW10] Assume that Alice and Bob share PR⊗n
ε (a≤nb≤n | x≤ny≤n).

Then, for any fully NS-attack P(a≤nb≤ne | x≤ny≤n) on PR⊗n
ε , it holds that

P (XOR(a1, ..., an) = e | x≤n) ≤
1
2

+ (2ε)n ∀x≤n . (3.32)
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fr(a1...an) = s

e

...

...

b1

bi

bn

y1

yi

yn

PR"

PR"

PR"
x1

xi

xn
an

ai

a1

s s0fr(b1...bn) = s0

raw secret

rrandom seed

condensed secret
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P(fr(a1...an) = e | x1...xn, u = r) =?

Figure 3.2. No-signalling privacy amplification: We study no-signalling privacy
amplification for the case when Alice and Bob hold n PRε boxes. Due to the nonlo-
cality of PRε, the string of outputs of the n PRε is partially secret for no-signalling
adversary Eve. In the context of a secret-key distribution protocol Alice needs to
communicate the (random) choice r of the privacy-amplification function eventu-
ally to Bob. Eve can wait to access her marginal system E until Alice communicates
the choice of the privacy-amplification function r and choose her input u accord-
ingly. The output e of the system represents her knowledge about the output of the
key-distribution protocol: the final secret key s = f r(a1...an).
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Therefore, (exponential) fully no-signalling privacy amplification is possible,
and even achieved by a deterministic function, i.e., the parity of the outputs. Theo-
rems 3.2.1 and 3.2.2 are somewhat the extreme cases of no-signalling privacy ampli-
fication. The security offered by Theorem 3.2.2 allows the construction of efficient
key distribution protocols based solely on the minimal assumptions (1) and (2) (see
Figure 1.2 in the Introduction) [HRW10, Mas09]. However, this comes at the price
of ensuring no-signalling conditions between all systems A1...AnB1...Bn, i.e., it must
be ensured that no information can be exchanged between the measurement devices
during the protocol. The number of conditions grows logarithmicly with the security
parameter of the protocol; this fact limits the practical feasibility of strong security
parameters. On the other hand, the ABNS-attack assumes absolutely no additional
no-signalling beside 3-party no-signalling between Alice, Bob and the adversary
Eve. Yet, if Alice and Bob reuse their devices to produce the systems A1B1 to AnBn

consecutively, then previously obtained outputs ai cannot depend on future inputs
x j, for j > i, as this would contradict that x j is freely chosen. This motivates the
study of an intermediate adversary, the so-called time-ordered no-signalling (TONS)
adversary.

Theorem 3.2.3. [AFTS12] Assume that Alice and Bob share PR⊗n
ε (a≤nb≤n | x≤ny≤n).

Then, for any function f (a≤n), there exists a TONS-attack P(a≤nb≤ne | x≤ny≤n) on
PR⊗n

ε , such that

P( f (a≤n) = e | x≤n) ≥
1
2

+
ε

2n
∀x≤n . (3.33)

In Section 3.4, Section 3.5 and Section 3.8 we aim to strengthen and generalise
this result.

3.3 Time-ordered no-signalling attacks by exten-
sion of Santha-Vazirani distributions

Before discussing TONS privacy amplification, we present in Section 3.3.1 the com-
parable “classical” case introduced by Santa and Vazirani [SV84]: deterministic
privacy amplification against a so-called Santha-Vazirani source. We do so for two
reasons: First for the mere sake of comparison to inspect differences and similari-
ties; second, as there are indications that the classical attacks in the Santha-Vazirani
setting can be extended to no-signalling setting, which we discuss in Section 3.4.1.
However, in Section 3.3.2 we argue that these extensions cannot be constructed in a
trivial manner, yet show that they are possible for certain special cases.



36 3.3 TONS attacks by extension of Santha-Vazirani distributions

3.3.1 Impossibility of deterministic (classical) privacy ampli-
fication on Santha-Vazirani distributions

We phrase classical deterministic privacy amplification on Santha-Vazirani distribu-
tion as a game of two players, Alice and Eve, which we call a Santha-Vazirani game.
Let us define first

Definition 9 (Santha-Vazirani distribution). A distribution Q(a≤ne) is an ε-Santha-
Vazirani distribution if it satisfies the two properties∑

e

Q(a≤ne) = 2−n , (3.34)

and the so-called “Santha-Vazirani”-condition

Q(ai | a<ie) ≤
1
2

+ ε ∀a<i, ai, e . (3.35)

From now on we denote an ε-Santha-Vazirani distribution Q(a≤ne) with an extra
subscript and write Qε−sv(a≤ne) whenever (3.34) and (3.35) are satisfied. Let us state
the game:

1. Alice first chooses a natural number n and a function f (a≤n) : {0, 1}⊗n → {0, 1}
and hands it to Eve,

2. then, upon receiving f (a≤n), Eve chooses an ε-Santha-Vazirani distribution
Qε−sv(a≤ne) : {0, 1}⊗n+1 → [0, 1],

3. Eve wins if f (a≤n) = e, Alice wins otherwise, with the winning probabilities
with respect to Qε−sv(a≤ne).

Note that this game is indeed comparable with no-signalling privacy amplification
on PR⊗n

ε (a≤nb≤n | x≤ny≤n) (see Section 3.2.1). In no-signalling privacy amplification
we can analyse the attack P(a≤nb≤ne | x≤ny≤n) also for deterministic functions f (a≤n).
Since the marginal PRε(ai | xi) is uniform (for any xi), the marginal of Alice systems
are also uniform ∑

b≤ne

P(a≤nb≤ne | x≤ny≤n) = 2−n ∀a≤n, x≤n . (3.36)

And, finally, if the input x≤n remains unknown to Eve, then her knowledge about
each bit is bounded, see (3.24), by

P(e = ai | x≤n) ≤
1
2

+ ε . (3.37)
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The definition of a Santha-Vazirani distribution and a Santha-Vazirani game we
introduce here differs from the original in [SV84]: There, Santa and Vazirani con-
sider distributions on n bits Q(a≤n) that satisfy

Q(ai | a<i) ≤
1
2

+ ε ∀a<i, ai , (3.38)

but are otherwise unconstrained. The game then has two steps; First Alice chooses
the function f (a≤n) and communicates her choice to Eve. Then Eve chooses a bit
e and a distribution Q(a≤n). Eve wins if Qε−sv( f (a≤n) = e) and Alice otherwise.
Clearly, the original scenario is more advantageous to Eve since in our game (3.34)
has to be satisfied, but also in our game privacy amplification is impossible. By
the condition (3.35) it is clear that Alice can always win the game with probability
1/2 + ε; she chooses simply n = 1 and f (a1) = a1. However, this is also her optimal
strategy. To see this let us present an elegant argument for balanced functions f (a≤n)
by Reingold et al. [RVW].1

Definition 10 (Balanced function). A function f (a≤n) : {0, 1}n → {0, 1} is balanced
if

|{a≤n : f (a≤n) = 0}| = 2n−1 . (3.39)

Reingold et al. construct the distribution Qε−sv(a≤ne) as

Qε−sv(e) =
1
2

and (3.40)

Qε−sv(a≤n | e) = 2−n
(
1 + 2ε(−1)( f (a≤n)⊕e

)
. (3.41)

The equations (3.40) and (3.41) define an ε-Santha-Vazirani distribution, which we
refer to as the Reingold-distribution. (3.34) follows directly for balanced functions,
to prove (3.35) notice that

1 − 2ε
1 + 2ε

≤
Qε−sv(a≤n | e)
Qε−sv(a′≤n | e)

≤
1 + 2ε
1 − 2ε

∀a≤n, a′≤n . (3.42)

Since Qε−sv(a≤i | e) =
∑

a>i
Qε−sv(a≤ia>i | e) this implies also

1 − 2ε
1 + 2ε

≤
Qε−sv(a≤i | e)
Qε−sv(a′≤i | e)

≤
1 + 2ε
1 − 2ε

∀a≤i, a′≤i , (3.43)

1Through an analogous construction to the one we use in the proof of Theorem 3.4.4, one can
show that using an unbalanced function cannot provide any advantage to Alice in the above game.
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and, therefore,

Qε−sv(ai | a>ie) =
Qε−sv(a>iai | e)
Qε−sv(a>i | e)

=
Qε−sv(a>iai | e)

Qε−sv(a>iai | e) + Qε−sv(a>iai | e)

≤
1 + 2ε

1 + 2ε + 1 − 2ε
=

1
2

+ ε . (3.44)

Obviously, Qε−sv(a≤ne) satisfies for any balanced function

Qε−sv( f (a≤n) = e) =
1
2

+ ε . (3.45)

Consequently, this construction proves that deterministic privacy amplification on
ε-Santha-Vazirani-distributions is impossible. One reason why we present the dis-
tribution Qε−sv(a≤ne) defined by construction (3.40) and (3.41) in such detail, is
that there is evidence, which we will discuss subsequently in this Section 3.4.1,
that such a distribution can be extended to a TONS-attack P(a≤nb≤ne | x≤ny≤n) on
PR⊗n

ε (a≤nb≤n | x≤ny≤n), i.e.,

Conjecture 3.3.1. For any balanced function f (a≤n) there exists a P(a≤nb≤ne | x≤ny≤n)

1. that is a TONS attack on PR⊗n
ε (a≤nb≤n | x≤ny≤n), and

2. has the distribution Qε−sv defined by (3.40),(3.41) as a marginal on A≤nE, i.e.,

P(a≤ne | x≤n) = Qε−sv(a≤ne) ∀x≤n . (3.46)

Corollary 3.3.2. If Conjecture 3.3.1 holds then privacy amplification against a time-
ordered no-signalling adversary is impossible.

In Section 3.3.2 we discuss two instructive but unsuccessful attempts to prove
Conjecture 3.3.1. In Section 3.4.1 we give indications on how such a proof might
work, see Conjecture 3.4.1.

3.3.2 Limits of straightforward extensions of ε-Santha-Vazirani
distributions to time-ordered no-signalling attacks

We show that (in most cases) there is no straightforward way to extend an adver-
sary attacking an ε-Santha-Vazirani distribution to a TONS-attack on PR⊗n

ε , i.e.,
to construct an extension P(a≤nb≤ne | x≤ny≤n) to the ε-Santha-Vazirani distribution
Qε−sv(a≤ne) which is a TONS-attack on PR⊗n

ε . The rough idea behind such an exten-
sion would be to combine distributions consecutively such that
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1. that Qε−sv(a≤ne) is naturally embedded in P(a≤nb≤ne | x≤ny≤n),

2. the distribution on the i-th systems AiBi of Alice and Bob is composed of
no-signalling distributions, to ensure no-signalling between Alice and Bob,
and

3. the composition of the distribution on the i-th systems AiBi depends only on
past inputs and outputs, to ensure time-ordered no-signalling constraints from
future to past systems.

Fix an ε-Santha-Vazirani distribution Qε−sv(a≤ne), e.g., defined by (3.40), (3.41).
Now define the sets of functions {t(a<i, e)} and {τ(a<i, e)} by the equations

Qε−sv(ai | a<ie) =
1
2

+ (−1)ai⊕t(a<i,e)τ(a<i, e) . (3.47)

Since Qε−sv(a≤ne) satisfies (3.34) and (3.35), this definition implies the following
properties for {t(a<i, e)} and {τ(a<i, e)}

(3.35)
⇒ τ(a<i, e) ≤ ε ∀a<i, e , (3.48)
(3.34)
⇒ t(a<i, e) = t(a<i, e) ⊕ 1 ∀a<i , (3.49)

(3.34)
⇒ τ(a<i, e) Qε−sv(a<ie) = τ(a<i, e) Qε−sv(a<ie) ∀a<i . (3.50)

Now we proceed with the first attempt to extend the distribution Qε−sv(a≤ne) to a
TONS attack. We define the distribution P(a≤nb≤ne | x≤ny≤n) as

P(e) = Qε−sv(e) (3.51)

P(a≤nb≤n | ex≤ny≤n) =

n∏
i=1

P(aibi | a<ib<iex≤iy≤i) with (3.52)

P(aibi | xiyia<ib<ie) = (1 − 2ε) PR(aibi | xiyi) + 2
(
ε − τ(a<i, e)

)
U(aibi)

+ 2τ(a<i, e) Dt(a<i,e)(ai) U(bi) . (3.53)

Theorem 3.3.3. The box P(a≤nb≤ne | x≤ny≤n) defined by (3.51), (3.52), and (3.53)
has the marginal Qε−sv(a≤ne) on systems A≤nE. Furthermore, P(a≤nb≤ne | x≤ny≤n) is
a valid time-ordered no-signalling attack on PR⊗n

ε (a≤nb≤n | x≤ny≤n) if and only if for
each string a≤n there exists only a single prefix a<i such that τ(a<i, e) , 0.
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Proof. First of all, note that P(a≤nb≤ne | x≤ny≤n) is indeed a valid probability distribu-
tion; it is normalised since (3.53) is a normalised composition of again normalised
probability distributions and every entry is positive due to equation (3.48). In The-
orem 3.3.4 we prove that there exists a TONS attack P(a≤nb≤ne | x≤ny≤n) on PR⊗n

ε

with the correct marginal Qε−sv(a≤ne) on the systems A≤nE if the condition on the
τ(a<i, e) holds in a more general context. Therefore, we will only briefly sketch the
proof that P(a≤nb≤ne | x≤ny≤n) satisfies the TONS conditions (2.3) and has indeed the
correct marginal on the systems A≤nE, i.e.,∑

b≤n

P(a≤nb≤ne | x≤ny≤n) = Qε−sv(a≤ne) ∀x≤n, y≤n . (3.54)

From (3.53) we obtain by the definition of the boxes PR,U, and D in Section 2.3∑
bi

P(aibi | xiyia<ib<ie) =
∑

bi

(
(1 − 2ε) PR(aibi | xiyi) + 2(ε − τ(a<i, e)) U(aibi)

+ 2τ(a<i, e) Dt(a<i,e)(ai) U(bi)
)

= (1 − 2ε)
1
2

+ 2(ε − τ(a<i, e))
1
2

+ 2τ(a<i, e) δ(t(a<i, e), ai)

=
1
2

+ (−1)ai⊕t(a<i,e) τ(a<i, e) , (3.55)

as well as∑
ai

P(aibi | xiyia<ib<ie) =
∑

ai

(
(1 − 2ε) PR(aibi | xiyi) + 2(ε − τ(a<i, e)) U(aibi)

+ 2τ(a<i, e) Dt(a<i,e)(ai) U(bi)
)

= (1 − 2ε)
1
2

+ 2(ε − τ(a<i, e))
1
2

+ 2τ(a<i, e)
1
2

=
1
2
. (3.56)

From (3.55) and (3.56) together with the recursive construction of P(a≤nb≤n | ex≤ny≤n)
(3.52) one can easily derive (3.54) and the TONS conditions for the distribution
conditioned on system E, (3.2), by straightforwardly carrying out the respective
summations. We discuss in more detail why P(a≤nb≤ne | x≤ny≤n) has the marginal
PR⊗n

ε (a≤nb≤n | x≤ny≤n) on systems A≤nB≤n if and only if for each string a≤n there ex-
ists at most one prefix a<i such that τ(a<i, e) , 0. The problem arises when we try to
show that the construction (3.51) to (3.53) is an extension of the distribution PR⊗n

ε

on the systems A≤nB≤n, i.e.,∑
e

P(a≤nb≤ne | x≤ny≤n) = PR⊗n
ε (a≤nb≤n | x≤ny≤n) . (3.57)
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Through a recursive argument one can see that (3.57) is true if and only if for any
1 ≤ i ≤ n it holds that∑

e

P(aibie | a<ib<ix<ixiy<iyi) = PRε(aibi | xiyi) ∀a<i, b<i, x<i, y<i . (3.58)

For the left side of (3.58) we have∑
e

P(aibie | a<ib<ix<ixiy<iyi)

=
∑

e

P(e | a<ib<ix≤iy≤i) P(aibie | a<ib<ix<ixiy<iyi)

=
∑

e

P(e | a<ib<ix≤iy≤i)
(
(1 − 2ε) PR(aibi | xiyi) + 2(ε − τ(a<i, e)) U(aibi)

+ 2τ(a<i, e) Dt(a<i,e)(ai) U(bi)
)

=PRε(aibi | xiyi) +
∑

e

P(e | a<ib<ix≤iy≤i) τ(a<i, e)
(
Dt(a<i,e)(ai) − U(ai)

)
, (3.59)

which is equal to the right side of (3.58) exactly when the sum vanishes. Using that
U(ai) = 1/2 = 1/2(D0(ai) + D1(ai)) and (3.49), we conclude that for the sum to
vanish it must hold that

P(e | a<ib<ix≤iy≤i) τ(a<i, e) = P(e | a<ib<ix≤iy≤i) τ(a<i, e) . (3.60)

By the recursive construction of P(a≤nb≤n|ex≤ny≤n) (3.52), we can conclude that

P(e | a<ib<ix≤iy≤i) P(a<ib<i | x≤iy≤i) = P(a<ib<ie | x≤iy≤i)

= P(a<ib<ie | x<iy<i) , (3.61)

and (3.60) becomes equivalent to

P(a<ib<ie | x<iy<i) τ(a<i, e) = P(a<ib<ie | x<iy<i) τ(a<i, e) . (3.62)

If τ(a<i, e) , 0, then using (3.54) and (3.50), (3.62) is equivalent to

P(a<ib<ie | x<iy<i)
P(a<ib<ie | x<iy<i)

=
P(a<ie | x<i)
P(a<ie | x<i)

=
Qε−sv(a<ie)
Qε−sv(a<ie)

. (3.63)

If there exists a prefix a< j of a<i such that τ(a< j, e) , 0 then one can always find
values for b<i, x<i and y<i such that (3.63) does not hold: assume without loss of
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generality that a< j is the only prefix of a<i such that τ(a< j, e) , 0, then using the
construction (3.51)-(3.53) we obtain

P(a<ib<ie | x<iy<i)
P(a<ib<ie | x<iy<i)

=
P(e) P(a<ib<i | ex<iy<i)
P(e) P(a<ib<i | ex<iy<i)

=
P(a jb j | ea< jb< jx≤ jy≤ j)

∏i−1
k=1,k, j PRε(akbk | xkyk)

P(a jb j | ea< jb< jx≤ jy≤ j)
∏i−1

k=1,k, j PRε(akbk | xkyk)

=
P(a jb j | ea< jb< jx≤ jy≤ j)
P(a jb j | ea< jb< jx≤ jy≤ j)

=
(1 − 2ε) PR(a jb j | x jy j) + 2(ε − τ(a< j, e)) U(a jb j) + 2τ(a< j, e) Dt(a< j,e)(a j) U(b j)
(1 − 2ε) PR(a jb j | x jy j) + 2(ε − τ(a< j, e)) U(a jb j) + 2τ(a< j, e) Dt(a< j,e)(a j) U(b j)

(3.64)

By assumption, we have

Qε−sv(a< je) = 2− j = Qε−sv(a< je) , (3.65)

and thus t(a< j, e) = t(a< j, e). Due to the PR(a jb j | x jy j) part, the fraction in (3.64)
must take two different values depending on whether a j = x j ·y j⊕b j or a j , x j ·y j⊕b j

and is in contradiction to (3.63).
On the other hand, if each string of bits a≤n has only a single prefix a<i such that

τ(a<ie) , 0, then (3.60) is true trivially for any j , i. And, since τ(a< j, e) = 0 for
any prefix of a< j of a<i by construction (3.51)-(3.53) we obtain

P(a<ib<ie | x<iy<i) = P(e) PR⊗i−1
ε (a<ib<i | x<iy<i)

= P(e) PR⊗i−1
ε (a<ib<i | x<iy<i)

= P(a<ib<ie | x<iy<i)

⇒ Q(a<ie) = P(a<ie | x<i)

=
∑
b<i

P(a<ib<ie | x<iy<i)

=
∑
b<i

P(a<ib<ie | x<iy<i)

= P(a<ie | x<i)

= Q(a<ie) , (3.66)

and, therefore, also equation (3.63). �
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The τ(a<i, e) satisfy (3.62) in the average over b≤n, see (3.50) and (3.50). This in-
spires another idea to extend an ε-Santha-Vazirani distribution Qε−sv(a≤ne) in an
analogous fashion to (3.51) to (3.53), however, using rescaled values of τ(a<ie),
namely τ̃(a<ib<iex<iy<i) in construction (3.67)-(3.70). For such a construction to
work, such rescaled values {τ̃(a<ib<iex<iy<i)} should be chosen such that

1. P(a≤nb≤ne | x≤ny≤n) satisfies (3.60) or, equivalently, one of the equations (3.62)
or (3.63), in order to guarantee that it is an extension of PR⊗n

ε ,

2. in the average over bk, ..., bi−1 the value τ̃(a<ib<iex<iy<i) becomes independent
of yk, ..., yi−1, to ensure TONS conditions (2.3) (since τ̃(a<ib<iex<iy<i) influ-
ences the marginal distribution of ai, see (3.55))

3. in the average over b≤n the value τ̃(a<ib<iex<iy<i) equals τ(a<ie) to ensure that
(3.54) is satisfied.

This wish list is quite demanding, but surprisingly, there exists a set {τ̃(a<ib<iex<iy<i)}
such that all three conditions are satisfied. These lead to the following construction
for P(a≤nb≤ne | x≤ny≤n):

P(e) = Qε−sv(e) (3.67)

P(a≤nb≤n | ex≤ny≤n) =

n∏
i=1

P(aibi | a<ib<iex≤iy≤i) (3.68)

P(aibi | a<ib<iex≤iy≤i) = (1 − 2ε) PR(aibi | xiyi) + 2
(
ε − τ̃(a<ib<ix<iy<i, e)

)
U(aibi)

+ 2τ̃(a<ib<ix<iy<i, e) Dt(a<i,e)(ai) U(bi) (3.69)

with τ̃(a<ib<ix<iy<i, e) := τ(a<i, e) ·
Qε−sv(e | a<i)

P(e | a<ib<ix<iy<i)
. (3.70)

The only problem of construction (3.67)-(3.70) is, that it does not necessary hold that
τ̃(a<ib<ix<iy<i, e) ≤ ε for general functions f (a≤n), which implies negative entries in
P(a≤nb≤ne | x≤ny≤n). This leads us to the following Theorem:

Theorem 3.3.4. Let the functions {τ(a<ie)} and {t(a<ie)} be derived from an ε-Santha-
Vazirani distribution Qε−sv(a≤ne) through equation (3.47). Then the distribution
P(a≤nb≤ne | x≤ny≤n) defined by (3.67),(3.68), and (3.69) has the marginal Qε−sv(a≤ne)
on systems A≤nE. Furthermore, the distribution P(a≤nb≤ne | x≤ny≤n) is a valid time-
ordered no-signalling attack on PR⊗n

ε (a≤nb≤n | x≤ny≤n) if (and only if)

|τ̃(a<ib<ix<iy<i, e)| ≤ ε ∀a<i, b<i, x<i, y<i, e, (3.71)

for the function f (a≤n).
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Proof. The proof is divided into three steps, essentially working through the three
points of wish list we stated above the construction. If these three conditions hold,
then the distribution P(a≤nb≤ne | x≤ny≤n) is a valid no-signalling attack exactly if it
is a valid probability distribution, i.e., it is normalised and with non-negative en-
tries. By construction (3.67) to (3.69) P(a≤nb≤ne | x≤ny≤n) is normalised as it is a
composed of normalised probability distributions. Therefore, P(a≤nb≤ne | x≤ny≤n) is
a valid probability distribution exactly if it is positive, which is the case if and only
if |τ̃(a<ib<ix<iy<i, e)| ≤ ε. The latter is easy to see by choosing ai⊕bi , xiyi in (3.69).

1. We start by showing that P(a≤nb≤ne | x≤ny≤n) is an extension of PR⊗n
ε , i.e.,

(3.57). Following the same reasoning as between the equations (3.58) and (3.60),
(3.57) is equivalent to

P(e | a<ib<ix≤iy≤i) τ̃(a<ib<ix<iy<i, e) = P(e | a<ib<ix≤iy≤i) τ̃(a<ib<ix<iy<i, e) , (3.72)

which holds by (3.70), together with (3.50).
2. We address the TONS conditions (3.2), i.e., we show that P(a≤nb≤n | ex≤ny≤n)

has a well-defined marginal distribution for all systems AiB j, for any 0 ≤ i, j ≤ n.
Analogous to obtaining (3.55) and (3.56) from (3.53), (3.69) implies∑

bi

P(aibi | a<ib<iex≤iy≤i) =
1
2

+ (−1)ai⊕t(a<i,e) τ̃(a<ib<ix<iy<i, e) , (3.73)

as well as ∑
ai

P(aibi | xiyia<ib<ie) =
1
2
, (3.74)

and, of course, ∑
aibi

P(aibi | xiyia<ib<ie) = 1 . (3.75)

The latter directly implies that P(a≤nb≤ne | x≤ny≤n) has a well-defined marginal on
A≤ jB≤ j with

∑
a> jb> j

P(a≤nb≤n | ex≤ny≤n) =

n∏
i=1

P(aibi | a<ib<iex≤iy≤i)

=

j∏
i=1

P(aibi | a<ib<iex≤iy≤i)

=: P(a≤ jb≤ j | ex≤ jy≤ j) . (3.76)
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To prove that P(a≤nb≤ne | x≤ny≤n) has a well-defined marginal on A≤iB≤ j for i < j, we
use (3.74) and obtain

∑
ai+1...a j

P(a≤ jb≤ j | ex≤ jy≤ j) = P(a≤ib≤i | ex≤iy≤i)
j∏

k=i+1

∑
ak

P(akbk | a<kb<kex≤ky≤k)

= 2−( j−i) P(a≤ib≤i | ex≤iy≤i)

=: P(a≤ib≤ j | ex≤iy≤ j) . (3.77)

Finally, we will come to the case of i > j, which is a little more intricate to prove.
To facilitate this, we need some small preparations. Using Bayes’ rule and that
Qε−sv(a≤n) = 2−n, see (3.34), we obtain

Qε−sv(e | a<i) =
Qε−sv(a<ie)
Qε−sv(a<i)

= 2i−1 Qε−sv(a<ie) . (3.78)

Since P(a≤nb≤ne | x≤ny≤n) is an extension of PR⊗n
ε we conclude, again with Bayes’

help, that

P(e | a<ib<ix<iy<i) =
P(a<ib<ie | x<iy<i)
P(a<ib<i | x<iy<i)

= P(e | a≤ jb≤ jx≤ jy≤ j)
P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jex<iy<i)
P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jx≤iy≤i)

= P(e | a≤ jb≤ jx≤ jy≤ j)
P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jex<iy<i)∏i−1

k= j+1 PRε(akbk | xkyk)
.

(3.79)

Using
∑

bk
PRε(akbk | xkyk) = 1/2, we obtain∑
b j+1...bi−1

P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jex<iy<i) τ̃(a<ib<ix<iy<i, e)

(3.70)
⇒ =

∑
b j+1...bi−1

P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jex<iy<i) τ(a<ie)
Qε−sv(e | a<i)

P(e | a<ib<ix<iy<i)

(3.78),(3.79)
⇒ = Qε−sv(a<ie) τ(a<ie)

2i−1

P(e | a≤ jb≤ jx≤ jy≤ j)

∑
b j+1...bi−1

i−1∏
k= j+1

PRε(akbk | xkyk)

= Qε−sv(a<ie) τ(a<ie)
2 j

P(e | a≤ jb≤ jx≤ jy≤ j)
. (3.80)
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Now we can compute the marginal of P(a≤nb≤n | ex≤ny≤n) on systems AiB j for i > j
by using (3.80) consecutively (i − j) times:∑

b j+1...bi

P(a≤ib≤i | ex≤iy≤i)

= P(a≤ jb≤ j | ex≤ jy≤ j)
∑

b j+1...bi

P(a j+1...aib j+1...bi | a≤ jb≤ jex≤iy≤i) (3.81)

= P(a≤ jb≤ j | ex≤ jy≤ j)
∑

b j+1...bi−1

(
P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jex≤iy≤i)(

1
2

+ (−1)t(a<ie) τ̃(a<ib<ix<iy<i, e)
) )

= P(a≤ jb≤ j | ex≤ jy≤ j) ·
(
1
2

∑
b j+1...bi−1

P(a j+1...ai−1b j+1...bi−1 | a≤ jb≤ jex≤iy≤i)

+ (−1)t(a<ie) Qε−sv(a<ie) τ(a<ie)
2 j

P(e | a≤ jb≤ jx≤ jy≤ j)

)
=

...

= P(a≤ jb≤ j | ex≤ jy≤ j)
2 j

P(e | a≤ jb≤ jx≤ jy≤ j)
·

i∑
k= j+1

2−i+k Qε−sv(a<ke) (−1)t(a<ie) τ(a<ke)

=: P(a≤ib≤ j | ex≤iy≤ j) , (3.82)

and, thus, the TONS conditions are satisfied for all 0 ≤ i, j ≤ n.
3. Finally, we show that P(a≤nb≤n | ex≤ny≤n) has the marginal Qε−sv(a≤ne) on

systems A≤nE:

Qε−sv(a≤ne) = Qε−sv(a<ne) Qε−sv(an | a<ne)

= Qε−sv(a<ne)
1
2

+ Qε−sv(a<ne) (−1)t(a<ne) τ(a<ke)

...

=

n∑
k=1

(
1
2

)n−k

Qε−sv(a<ke) (−1)t(a<ke) τ(a<ke)

= P(e) P(e)−1
n∑

k=1

(
1
2

)n−k

Qε−sv(a<ke) (−1)t(a<ke) τ(a<ke)

= P(a≤ne) , (3.83)

where the last equation follows by setting i = n and j = 0 in (3.81). �
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Unfortunately, |τ̃(a<ib<ix<iy<ie)| ≤ ε is in general not satisfied if we use con-
struction (3.67)-(3.70) to extend the distribution Qε−sv(a≤ne) constructed in (3.40),
(3.41). One might wonder if construction (3.67)-(3.70) can be used to prove a con-
stant lower bound on the knowledge of a TONS adversary by shrinking ε in (3.40),
(3.41) by a constant factor, i.e., by substitution ε with ε′ = c1 · ε for an arbitrarily
small constant c > 0:

Qε′−sv(e) =
1
2

and (3.84)

Qε′−sv(a≤n | e) = 2−n
(
1 + 2c1 · ε (−1)( f (a≤n)⊕e

)
. (3.85)

This implies that τ(a≤ne) ≤ ε′ and, therefore, that also |τ̃(a<ib<ix<iy<ie)| could remain
small enough. In the remainder of the section we will show that this is not possible.
We present an example where |τ̃(a<ib<ix<iy<ie)| becomes arbitrarily larger than ε′,
the factor growing by

√
n.

We define the majority of n bits (n odd) in the usual way

Majn(a≤n) :=
{

0 H(a≤n) ≤ n−1
2

1 otherwise ,
(3.86)

where H(a≤n) is the Hamming weight of the string a≤n.

Theorem 3.3.5. Let ε′ = c1ε, and use the Rheingold construction (3.84) and (3.85)
for Majn(a≤n) to construct the ε′-Santha-Vazirani distribution Qε′−sv(a≤ne). For suf-
ficiently large (odd) n there always exist inputs and outputs a<i, b<i, e, x<i, y<i such
that

τ̃(a<ib<ix<iy<i, e) >
√

n
c2

ε′ =
c1

c2

√
n ε, (3.87)

for some positive constant c2.

For the proof Theorem 3.3.5 we use the following technical Lemma:

Lemma 3.3.6. For the construction (3.67) to (3.69) of P(a≤nb≤ne | x≤ny≤n), it holds
that

P(e | a≤ib≤ix≤iy≤i) = P(e) +
1
4

i∑
j=1

Qε′−sv(e | a≤ j) − Qε′−sv(e | a< j)
PRε(a jb j | x jy j)

. (3.88)
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Proof. We rewrite (3.69) using the definition of PRε and that U(aibi) = 1/4 and
obtain

P(aibi | a<ib<iex≤iy≤i) = (1 − 2ε) PR(aibi | xiyi) + 2(ε − τ̃(a<ib<ix<iy<i, e)) U(aibi)

+ 2τ̃(a<ib<ix<iy<i, e) Dt(a<ie)(ai) U(bi)

= PRε(aibi | xiyi) +
1
2

(−1)t(a<ie)⊕ai τ̃(a<ib<ix<iy<i, e) . (3.89)

With Bayes’ rule and (3.47) and Qε′−sv(ai) = 1/2 we conclude that

Qε′−sv(e | a≤i) =
Qε′−sv(a≤ie)
Qε′−sv(a≤i)

= Qε′−sv(e | a<i)
Qε′−sv(ai | a<ie)

Qε′−sv(ai)
= Qε′−sv(e | a<i) ·

(
1 + (−1)t(a<ie)⊕ai 2τ(a<ie)

)
⇒

1
2
(
Qε′−sv(e | a≤i) − Qε′−sv(e | a<i)

)
= τ(a<ie) Qε′−sv(e | a<i) (−1)t(a<ie)⊕ai . (3.90)

With the definition of τ̃(a<ib<ix<iy<ie),

τ̃(a<ib<ix<iy<i, e) = τ(a<i, e)
Qε−sv(e | a<i)

P(e | a<ib<ix<iy<i)
, (3.91)

and (3.89) and (3.90) we obtain

P(e | a≤ib≤ix≤iy≤i) =
P(a≤ib≤ie | x≤iy≤i)
P(a≤ib≤i | x≤iy≤i)

= P(e | a<ib<ix<iy<i)
P(aibi | a<ib<iex≤iy≤i)

P(aibi | xiyi)

= P(e | a<ib<ix<iy<i )
PRε(aibi | xiyi) + 1

2 (−1)t(a<ie)⊕ai τ̃(a<ib<ix<iy<i, e)
PRε(aibi | xiyi)

= P(e | a<ib<ix<iy<i) +
1
2

(−1)t(a<ie)⊕ai τ(a<ie) Qε′−sv(e | a<i)
PRε(aibi | xiyi)

...

= P(e) +
1
4

i∑
j=1

Qε′−sv(e | a≤ j) − Qε′−sv(e | a< j)
PRε(a jb j | x jy j)

, (3.92)

which completes the proof of Lemma 3.3.6. �

Now we will return to the proof of Theorem 3.3.5.
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Proof. By assumption Qε′−sv(a≤ne) is computed as

Qε′−sv(e) =
1
2

and

Qε′−sv(a≤n | e) = 2−n
(
1 + 2ε′(−1) f (a≤n)⊕e

)
, (3.93)

which implies

Qε′−sv(a≤i | e) =
∑
a>i

2−n
(
1 + 2ε′(−1) f (a≤n)⊕e

)
= 2−i + 2−n · 2ε′

(
|{a>i : f (a≤i, a>i) = e}| − |{a>i : f (a≤i, a>i) = e}|

)
.

(3.94)

Then we have for the conditioned probability Qε′−sv(e | a≤i)

Qε′−sv(e | a≤i) =
Qε′−sv(e)

Qε′−sv(a≤i)
Qε′−sv(a≤i | e)

= 2i−1 Qε′−sv(a≤i | e)

=
1
2

(
1 + 2−n+i · 2ε′

(
|{a>i : f (a≤i, a>i) = e}| − |{a>i : f (a≤i, a>i) = e}|

))
.

(3.95)

Consider the string a′≤n = 1(01)
n−1

2 where here (01)
n−1

2 is be interpreted as the n−1
2 -

fold concatenation of the string 01. We have for even i that H(a′
≤i) = i/2, and for

f (a≤n) = Majn(a≤n) that

|{a>i : Majn(a′≤i, a>i) = 0}| − |{a>i : Majn(a′≤i, a>i) = 1}|

=|{a>i : H(a>i) ≤
n − i − 1

2
}| − |{a>i : H(a>i) ≥

n − i + 1
2

}|

=

n−i−1
2∑

k=0

(
n − i

k

)
−

n−i∑
k= n−i−1

2

(
n − i

k

)
=0 , (3.96)

using
(

n
k

)
=

(
n

n−k

)
. And if i is odd, we obtain H(a′

≤i) = (i + 1)/2 and

|{a>i : Majn(a′≤i, a>i) = 0}| − |{a>i : Majn(a′≤i, a>i) = 1}|

=

n−i
2 −1∑
k=0

(
n − i

k

)
−

n−i∑
k= n−i

2

(
n − i

k

)

=(−1)
(
n − i

n−i
2

)
. (3.97)
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We insert (3.96) and (3.97) into (3.95) and conclude

Qε′−sv(e = 0 | a′≤i) =


1
2 i even
1
2

(
1 − 2−n+i · 2ε′

(
n−i
n−i
2

))
i odd

⇓ (3.98)

Qε′−sv(e = 0 | a′≤i) − Qε−sv(e = 0 | a′<i) = ε′ ·

 2−n+i−1
(

n−i+1
n−i+1

2

)
i even

−2−n+i
(

n−i
n−i
2

)
i odd .

(3.99)

We compute τ(a′<n, e = 0) with (3.90), (3.98), and (3.99)

τ(a′<n, e = 0) =
(−1)t(a<n,e=0)⊕a′n

(
Qε′−sv(e = 0 | a′≤n) − Qε′−sv(e = 0 | a′<n)

)
2Qε′−sv(e = 0 | a′<n)

= ε′ , (3.100)

which implies for τ̃(a′<n, b<n, x<n, y<n), defined in (3.70),

τ̃(a′<n, b<n, x<n, y<n, e = 0) = τ(a′<n, e)
Qε′−sv(e = 0 | a′<n)

P(e = 0 | a′<nb<nx<ny<n)

=
ε′

2P(e = 0 | a′<nb<nx<ny<n)
. (3.101)

We show now that we can choose b′
≤i, x

′
≤i, y

′
≤i such that |P(e = 0 | a′<ib

′
<ix
′
<iy
′
<i)| be-

comes arbitrarily small. We choose

a′j ⊕ b′j = x′j · y
′
j ⊕ 1 for j odd, and

a′j ⊕ b′j = x′j · y
′
j ⊕ α j for j even , (3.102)

where the set of bits {α j} is to be determined later. With this choice of b′<n, x
′
<n, y

′
<n,
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and Lemma 3.3.6 we compute P(e = 0 | a′<nb′<nx′<ny′<n) as

P(e = 0 | a′<nb′<nx′<ny′<n)

= P(e = 0) +
1
4

n−1∑
j=1

Qε′−sv(e = 0 | a′
≤ j) − Q(e = 0 | a′

≤ j)

PRε(a′jb
′
j | x
′
jy
′
j)

(3.99)
⇒ =

1
2

+
1
4

n−1∑
j even

ε′ · 2−n+ j−1
(n− j+1

n− j+1
2

)
PRε(a′jb

′
j | x
′
jy
′
j)
−

1
4

n−1∑
j odd

ε′ · 2−n+ j
(n− j

n− j
2

)
PRε(a′jb

′
j | x
′
jy
′
j)

(3.102)
⇒ =

1
2

+
1
2

n−1∑
j even

ε′ · 2−n+ j−1
(n− j+1

n− j+1
2

)
δ(α j, 0) · (1 − ε) + δ(α j, 1) · ε

−
1
4

n−1∑
j odd

ε′ · 2−n+ j
(n− j

n− j
2

)
ε

=
1
2

+
1
2

n−1∑
j odd

c1 · δ(c j−1, 0) · (
ε

1 − ε
− 1) ·

(
n − j

n− j
2

)
· 2−n+ j

+
c1ε

2
(
δ(αn−1, 0) · (1 − ε) + δ(αn−1, 1) · ε

) · (n − 1
n−1

2

)
· 2−1 , (3.103)

where the last equation was obtained by a substitution j→ j + 1 in the left sum and
ε′ = c1n. For j being smaller than a constant fraction of n, i.e., j < c2 · n for some
constant 0 < c2 < 1, we can use Stirlings approximation for large n and obtain(

n − j
n− j

2

)
· 2−n+ j ≈

2n− j

√
n − j

2−n+ j =
1

√
n − j

. (3.104)

For values of j ≈ n the term
(n− j

n− j
2

)
· 2−n+ j becomes obviously constant. Thus, for

i = n − 1, then there must exist a choice for set {α0, ..., αn−3} and some constant c2,
such that

|P(e = 0 | a′<nb′<nx′<ny′<n)| ≤
c2
√

n
. (3.105)

With this choice, we have

τ̃(a′<n−1b′<n−1x′<n−1y′<n−1, e = 0) = τ(a′<n−1, e = 0)
Qε′−sv(a′<n−1 | e = 0)

P(e = 0 | a′<ib
′
<ix
′
<iy
′
<i)

=
ε′

2P(e = 0 | a′<ib
′
<ix
′
<iy
′
<i)

≥
√

n
c1

2c2
ε >> ε . (3.106)

�
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3.4 TONS attacks via another classical game

3.4.1 From a classical game over a weighted set of
distributions to TONS attacks

In this section we present a novel Ansatz to construct TONS-attacks on the boxes
PR⊗n

ε (a≤nb≤n | x≤ny≤n) from special distributions Qo−ε(a≤ne). We construct a set of
classical distributions {Qo−S(a≤ne)}, parametrised by a set S ∈ P([n]). Each dis-
tribution Qo−S(a≤ne) can be identified with a privacy-amplification game between
Alice and Eve that is similar to the Santha-Vazirani game we presented in Section
3.3.1. However, in this game Eve can obtain perfect information of the bits ai, i ∈ S
but no information about the bits ai, i ∈ S.

In Theorem 3.4.2 we will show that each of the distributions Qo−S(a≤ne) can be
extended to a TONS attack on a product distribution of noise boxes U(aibi | xiyi) for
i ∈ S and perfect PR(aibi | xiyi) boxes for i ∈ S. A weighted sum of these product
distributions corresponds to PR⊗n

ε (a≤nb≤n | x≤ny≤n). We define Qo−ε(a≤ne) as the sum
over the set {Qo−S(a≤ne)}with the same weights and, thus, the distribution Qo−ε(a≤ne)
induces a TONS attack on PRn

ε (see Figure 3.3). Let us define the distributions
{Qo−S(a≤ne)} and Qo−ε(a≤ne).

Definition 11 (Ordered S-influenceable distributions). For a set S ∈ P([n]) we de-
fine an ordered S-influenceable distribution Qo−S(a≤ne) as a probability distribution
that satisfies uniformity on a≤n∑

e

Qo−S(a≤ne) = 2−n ∀a≤n and (3.107)

Qo−S(ai | a<ie) =
1
2
∀a≤i, e, and i ∈ S . (3.108)

We call the distribution Qo−S(a≤ne) ordered because the number of conditions
that (3.108) imposes on Qo−S(a≤ne) grows exponentially in i for each i ∈ S. In
Section 3.7.1 we define a set of distributions {QS(a≤ne)} in the context of an anal-
ogous construction of ABNS attacks where the respective conditions to (3.108) are
symmetric for each i, see (3.231).

Definition 12 (Ordered (ε,S)-divisible distribution). Fix a given set of ordered S-
influenceable distributions {Qo−S(a≤ne)}. Define an ordered (ε,S)-divisible distribu-
tion Qo−ε(a≤ne) as

Qo−ε(a≤ne) :=
∑
S∈P([n])

ω(S, n, ε) Qo−S(a≤ne) , (3.109)
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with weights

ω(S, n, ε) := (1 − 2ε)n−|S| (2ε)|S| . (3.110)

Let us consider the following privacy-amplification game between Alice and
Eve. First Alice chooses a function f (a≤n) and hands it to Eve. Then Eve constructs
an ordered (ε,S)-divisible distribution Qo−ε(a≤ne). Draw the string a≤ne according
to the distribution Qo−ε(a≤ne). Eve wins if f (a≤n) = e; Alice wins otherwise.

Note that implicitly Eve must construct the set of distributions {Qo−S}. The trivial
strategy for Alice is to let the function be equal to a single bit, e.g., f (a≤n) = a1. For
this strategy the optimal winning probability for Eve is the same as in the Santha-
Vazirani game from Section 3.3.1, i.e., Qo−ε(a1 = e) = 1/2 + ε: If {1} ∈ S, the
optimal strategy for Eve is to set Qo−S(a≤ne) = 2−nδ(a1, e) and win with probability
1. If {1} ∈ S, then (3.108) implies that Qo−S(a1 = e) = 1/2, independently from how
Eve constructs Qo−S(a≤ne). By the definition of ω(S, n, ε) (3.110) the weight of the
sets S that contain {1} is 2ε, and thus Eve’s winning probability is

Qo−ε(a1 = e) = 2ε · 1 + (1 − 2ε) ·
1
2

=
1
2

+ ε. (3.111)

For Santha-Vazirani games, we saw that this trivial strategy is the best that Alice can
do: Eve can always achieve a winning probability of 1/2 + ε due to the Reingold
construction, (3.40) and (3.41). However, the best general lower bound for optimal
strategies Qo−ε(a≤ne) that we obtain is Qo−ε( f (a≤n) = e) ≥ 1/2 + ε/n. Note that the
two games are quite similar: both Qo−ε(a≤ne) and Qε−sv(a≤ne) must satisfy that the
marginal distribution on Alice’s bits is uniform, i.e.,∑

e

Qo−ε(a≤ne) = 2−n =
∑

e

Qε−sv(a≤ne) . (3.112)

Furthermore, one can easily show that Eve’s knowledge about a single bit ai is
bounded by the same value in both games, i.e.,∑

e

Qo−ε(e) max
a′

Qo−ε(ai = a′ | e) ≤
1
2

+ ε (3.113)

∑
e

Qε−sv(e) max
a′

Qε−sv(ai = a′ | e) ≤
1
2

+ ε . (3.114)

However, Qo−ε(a≤ne) does not have to satisfy the Santa-Vazirani condition (3.35) in
general, i.e., one can construct distributions Qo−ε(a≤ne), such that

Qo−ε(ai | a<ie) >
1
2

+ ε . (3.115)
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It would be surprising (at least to the author) if the S-divisibility condition
(3.109) is so restrictive that there is a large gap of the order of θ(n) in between
the optimal winning probabilities for Eve in both games. In addition, numerical
analysis suggests that there is a deeper connection between ordered (ε,S)-divisible
distribution Qo−ε(a≤ne) and the Reingold distributions Qε−sv(a≤ne), defined by (3.40)
and(3.41): For randomly chosen balanced functions f (a≤n) up to n = 8, each cor-
responding Reingold distribution Qε−sv(a≤ne) could be shown to be also an ordered
(ε,S)-divisible distribution Qo−ε(a≤ne).

Furthermore, if f (a≤n) is a prefix-coded function, see Definition 16, the con-
struction (3.170) and (3.171) for the set {Qo−S(a≤ne)} yields exactly an S-divisible
distribution Qo−ε(a≤ne) which is equal to the Qε−sv(a≤ne) from the Reingold con-
struction (3.40) and (3.41). This leads us to the following conjecture

Conjecture 3.4.1. For any balanced function f (a≤n), the ε-Santha-Vazirani distri-
bution Qε−sv(a≤ne) defined by Reingold construction (3.40) and (3.41) is also an
ordered (ε,S)-divisible distribution Qo−ε(a≤ne), i.e., there exists a set {QS} such that
for the corresponding Qo−ε(a≤ne), see (3.109), it holds that

Qo−ε(a≤ne) = Qε−sv(a≤ne) . (3.116)

If Conjecture 3.4.1 is true, then Theorem 3.4.3 implies that TONS privacy am-
plification is impossible.

We now show that any ordered (ε,S)-divisible distribution Qo−ε(a≤ne) induces a
TONS attack on a privacy amplification protocol on PR⊗n

ε (a≤nb≤n | x≤ny≤n).

Theorem 3.4.2. Any ordered S-influenceable distribution Qo−S(a≤ne) can be ex-
tended to a TONS-attack Po−S(a≤nb≤ne | x≤ny≤n) on the systems A≤nB≤n with marginal
distribution

PS(a≤nb≤n | x≤ny≤n) :=
∏
i∈S

U(aibi | xiyi)
∏
i∈S

PR(aibi | xiyi) . (3.117)

Proof. The proof consists of an explicit construction of Po−S(a≤nb≤ne | x≤ny≤n):

Po−S(e) = Qo−S(e) (3.118)

Po−S(a≤nb≤n | x≤ny≤ne) =

n∏
i=1

Po−S(aibi | a<ib<ix≤ny≤ne) (3.119)

Po−S(aibi | a<ib<ix≤ny≤ne) =

{
U(bi | yi) Qo−S(ai | a<ie) i ∈ S
PR(aibi | xiyi) otherwise .

(3.120)
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PR✏PR

U

PR

PR

U

...

1

2

3

4

n

PS(anbn|xnyn)

+

S

+

P(anbne|xnyn)

PR⌦n
✏ (anbn|xnyn)

PR✏

PR✏

PR✏
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...

X

S2P([n])
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Qo�S(ane)
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X
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!(S, ", n)Qo�S

Qo�"(ane)

Figure 3.3. Schematic view on Theorem 3.4.2 and Theorem 3.4.3. In Theorem 3.4.2
we show that a distribution Qo−S can be always be extended to a TONS attack on a
box PS consisting of a product of perfect PR-boxes and boxes U which just output
uniform bits. Taking a weighted sum of the Qo−S distributions implies Theorem
3.4.3, which states that a Qo−ε distribution can alway be extended to a TONS attack
on PR⊗n

ε .
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We have to show that (3.118)-(3.120) implies that Po−S(a≤nb≤ne | x≤ny≤n)

1. satisfies the TONS-conditions (3.2),

2. has the correct marginal on systems A≤nB≤n:∑
e

Po−S(a≤nb≤ne | x≤ny≤n) =
∏
i∈S

U(aibi | xiyi)
∏
i∈S

PR(aibi | xiyi) , (3.121)

3. and has the correct marginal on systems A≤nE (which must be independent
also of x≤n): ∑

b≤n

Po−S(a≤nb≤ne | x≤ny≤n) = Qo−S(a≤ne) . (3.122)

We start with the TONS conditions (2.3): We need to show for all 0 ≤ iA, iB ≤ n, that
the systems A≤iA B≤iB have a well-defined marginal distribution Po−S(a≤iAb≤iB | ex≤iAy≤iB):
First note that from (3.120) it follows directly ∀a<i, b≤ie, x≤i, y≤i that∑

aibi

Po−S(aibi | a<ib<iex≤iy≤i) = 1 (3.123)∑
ai

Po−S(aibi | a<ib<iex≤iy≤i) = U(bi | yi) , (3.124)

and also∑
bi

Po−S(aibi | a<ib<iex≤iy≤i) =

{
Qo−S(ai | a<ie) i ∈ S
1
2 = Qo−S(ai | a<ie) = Qo−S(ai | a<ie) otherwise .

(3.125)

We show that Po−S(a≤nb≤n | ex≤ny≤n) has a well-defined marginal first on systems
A≤iB≤i. Then we show this for the systems A≤iB≤k first for i < k and then for i > k,
and thus prove that satisfies the TONS Po−S(a≤nb≤n | ex≤ny≤n) conditions. From the
second equation in (3.123), it follows∑

a>ib>i

Po−S(a≤nb≤n | ex≤ny≤n)

=
∑

a>ib>i

n∏
j=1

Po−S(a jb j | a< jb< jex≤ jy≤ j)

=

i∏
j=1

Po−S(a jb j | a< jb< jex≤ jy≤ j)
n∏

j=i+1

∑
a jb j

Po−S(a jb j | a< jb< jex≤ jy≤ j)

=

i∏
j=1

Po−S(a jb j | a< jb< jex≤ jy≤ j) · 1

=: Po−S(a≤ib≤i | ex≤iy≤i) , (3.126)
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where the expression in second to last line is independent of x>iy>i and, therefore, is
the well-defined marginal on A≤iB≤i. Now for i < k, we have

∑
ai+1...ak

Po−S(a≤kb≤k | ex≤ky≤k)

= Po−S(a≤ib≤i | ex≤iy≤i)
∑

ai+1...ak

k∏
j=i+1

Po−S(a jb j | a< jb< jex≤ jy≤ j)

= Po−S(a≤ib≤i | ex≤iy≤i)
k∏

j=i+1

U(bi | yi)

=: Po−S(a≤ib≤k | ex≤iy≤k) , (3.127)

where we used for the second equality (3.124) k − i times. For i > k, we obtain
similarly

∑
bk+1...bi

Po−S(a≤ib≤i | ex≤iy≤i)

= Po−S(a≤kb≤k | ex≤ky≤k)
∑

bk+1...bi

i∏
j=k+1

Po−S(a jb j | a< jb< jex≤ jy≤ j)

= Po−S(a≤ib≤i | ex≤iy≤i)
i∏

j=k+1

Qo−S(a j | a< je)

=: Po−S(a≤ib≤k | ex≤iy≤k) . (3.128)

Thus, by (3.126),(3.127) and (3.128) all TONS conditions are satisfied.

In order to show that our construction yields the correct marginal distribution on
A≤nE we simply set i = n and k = 0 in (3.128) and directly obtain (3.122). Finally,
we need to prove the correct marginal distribution on the systems A≤nB≤n, i.e., that
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(3.121) is satisfied. Using the construction rules (3.118) to (3.120) we conclude that∑
e

P(a≤nb≤ne | x≤ny≤n)

=
∑

e

P(e)
n∏

i=1

P(aibi | a<ib<iex≤iy≤i)

=
∏
i∈S

PR(aibi | xiyi) ·
(∑

e

∏
i∈S

U(bi | yi) Qo−S(e) Qo−S(ai | a<ie)
)

=
∏
i∈S

PR(aibi | xiyi) ·
∏
i∈S

U(bi | yi)

·

(
2n−|S|Qo−S(e) Qo−S(a≤n | e) + 2n−|S|Qo−S(e) Qo−S(a≤n | e)

)
=

∏
i∈S

PR(aibi | xiyi) ·
∏
i∈S

1
2

U(bi | yi) · 2n
(
Qo−S(a≤ne) + Qo−S(a≤ne)

)
=

∏
i∈S

PR(aibi | xiyi)
∏
i∈S

U(ai | xi) U(bi | yi)

=
∏
i∈S

PR(aibi | xiyi)
∏
i∈S

U(aibi | xiyi) , (3.129)

where we used (3.108) in the third equation, (3.107) for the fifth equation, and that
U(aibi | xiyi) = U(ai | xi) U(bi | yi) for the last equation. �

Theorem 3.4.3. For any ordered (ε,S)-divisible distribution Qo−ε(a≤ne), there exists
a TONS-attack P(a≤nb≤ne | x≤ny≤n) on PR⊗n

ε (a≤nb≤n | x≤ny≤n) such that

∑
b≤n

P(a≤nb≤ne | x≤ny≤n) = Qo−ε(a≤ne) ∀x≤n, y≤n (3.130)

Proof. Theorem 3.4.3 follows from Definition 12, Theorem 3.4.2 and the fact that

PR⊗n
ε (a≤nb≤n | x≤ny≤n) =

∑
S∈P([n])

ω(S, n, ε) Po−S(a≤nb≤n | x≤ny≤n) . (3.131)

�

In the remainder of Section 3.4 we derive TONS attacks from the ordered (ε,S)-
divisible distributions Qo−ε(a≤ne). Consequently, we refer to a Qo−ε(a≤ne) that is
specifically constructed to ensure a high level of knowledge Qo−ε( f (a≤n) = e) for a
certain function f (a≤n) simply as an “attack” or “TONS attack” on f (a≤n).
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3.4.2 Unbalanced functions do not provide more secrecy than
balanced functions

Theorem 3.4.4. For any function f (a≤n) : {0, 1}n → {0, 1} there exists a balanced
function f ′(a0a≤n) : {0, 1}n+1 → {0, 1} such that for any Q′o−ε(a0a≤ne) there exists a
Qo−ε(a≤ne) such that

Qo−ε( f (a≤n) = e) = Q′o−ε( f ′(a0a≤n) = e) . (3.132)

Proof. For a given function f (a≤n) define

f ′(a0a≤n) := a0 ⊕ f (a≤n) . (3.133)

Let Q′o−ε(a0a≤ne) be an attack on the function f ′(a0a≤n) derived from the set of or-
dered T -influenceable distributions for T ∈ P(n + 1)

{Q′o−T (a0a≤ne)} = {Q′o−S(a0a≤ne)} ∪ {Q′o−S∪{0}(a0a≤ne)} with S ∈ P([n]) . (3.134)

Then define the set {Qo−S(a≤ne)} with elements

Qo−S(a≤ne) := (1 − 2ε)
∑

a0

Q′o−S(a0a≤n, a0 ⊕ e) + 2ε
∑

a0

Q′o−S∪{0}(a0a≤n, a0 ⊕ e) .

(3.135)

Now we need to show that the definition (3.135) implies (3.107) and (3.108) for
Qo−S(a≤ne). These follow from the same properties for Q′o−T (a0a≤ne); for (3.107)
we have∑

e

Qo−S(a≤ne)

= (1 − 2ε)
∑

e

∑
a0

Q′o−S(a0a≤n, a0 ⊕ e) + 2ε
∑

e

∑
a0

Q′o−S∪{0}(a0a≤n, a0 ⊕ e)

= (1 − 2ε)
∑

a0

Q′o−S(a0a≤n) + 2ε
∑

a0

Q′o−S∪{0}(a0a≤n)

= (1 − 2ε)
∑

a0

2−(n+1) + 2ε
∑

a0

2−(n+1)

= 2−n . (3.136)

Note that (3.108) implies for Q′o−T (a0a≤ne) that

Q′o−T (ai | a0a<ie) =
Q′o−T (a0a<i | e)

Q′o−T (a0a<iai | e)

=
α

2α
∀i < T , (3.137)
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and thus (3.108) follows also for Qo−S(a≤ne)

Qo−S(ai | a<ie) =
Qo−S(a<iai | e)
Qo−S(a<i | e)

=
(1 − 2ε)

∑
a0

Q′o−S(a0a<iai | a0 ⊕ e) + 2ε
∑

a0
Q′o−S∪0(a0a<iai | a0 ⊕ e)

(1 − 2ε)
∑

a0
Q′o−S(a0a<i | a0 ⊕ e) + 2ε

∑
a0

Q′o−S∪0(a0a<i | a0 ⊕ e)

=
(1 − 2ε) (α1 + α2) + 2ε (α3 + α4)

(1 − 2ε) (2α1 + 2α2) + 2ε (2α3 + 2α4)

=
1
2
. (3.138)

We complete the proof by showing (3.132): note that

Q′o−ε( f ′(a0a≤n) = e) =
∑
S∈P([n])

ω(S, n, ε)
(
(1 − 2ε) Q′o−S( f ′(a0a≤n) = e)

+ 2εQ′o−S∪0( f ′(a0a≤n) = e)
)
, (3.139)

which together with

(1 − 2ε) Q′o−S( f ′(a0a≤n) = e) + 2εQ′o−S∪0( f ′(a0a≤n) = e)

= (1 − 2ε) Q′o−S(a0 ⊕ f (a≤n) = e) + 2εQ′o−S∪0(a0 ⊕ f (a≤n) = e)

= (1 − 2ε) Q′o−S( f (a≤n) = a0 ⊕ e) + 2εQ′o−S∪0( f (a≤n) = a0 ⊕ e)

= Qo−S( f (a≤n) = e) , (3.140)

implies (3.132). �

3.5 Classical analysis of ordered (ε,S)-divisible
distributions Qo−ε(a≤ne)

In the following, if not specified otherwise we will assume that probabilities Q(a≤n)
are uniformly distributed.

3.5.1 Attacking linear functions

The first candidates as privacy-amplification functions are the set of parities
⊕

i∈S ai

for S ∈ P([n]). Against both, classical and quantum adversaries, privacy amplifica-
tion using 2-universal hashing (using a randomly chosen parity) is optimal. In the
setting of the fully no-signalling adversary studied in [HRW10] privacy amplifica-
tion is even possible when the parity is chosen deterministically, see Theorem 3.2.2.
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Using our framework, we will show that privacy amplification against a TONS ad-
versary is impossible using linear functions.

Theorem 3.5.1. No privacy amplification with linear (parity) functions. For any
T ∈ P([n]) there exists an ordered (ε,S)-divisible distribution Qo−ε(a≤ne) such that

Qo−ε
(⊕

i∈T

ai = e
)

=
1
2

+ ε (3.141)

Proof. Intuitively, we prove Theorem 3.5.1 by constructing an adversary Qo−ε(a≤ne)
who influences the bit ait where it := max

i
[i ∈ T ] by a value of ε into a preferred

direction depending of the parity of the previous bits ai1 , ..., ait−1 , i j ∈ T . Formally
the construction is as follows: For all S such that it ∈ S let Qo−S(a≤ne) be defined
as

Qo−S(e) =
1
2
, (3.142)

Qo−S(ai | a<ie) =

{
δ
(
ai, e ⊕

⊕
j∈T /i ai

)
i = it

1
2 otherwise .

(3.143)

It is easy to see that (3.108) is satisfied by construction. Note that (3.143) is equiva-
lent to

Qo−S(a≤n | e) = 2−n+1 δ
(
ait , e ⊕

⊕
j∈T /i

ai
)
, (3.144)

which yields (3.107) when averaged over Qo−S(e). For all S such that it < S set

Qo−S(a≤ne) = 2−(n+1) . (3.145)

Here (3.107) and (3.108) are satisfied trivially. The constructions (3.143) and (3.145)
for the set {Qo−S(a≤ne)} induce a Qo−ε(a≤ne) with

Qo−ε
(⊕

i∈T

ai = e
)

=
∑
S∈P([n])

ω(S, n, ε) Qo−S
(⊕

i∈T

ai = e
)

=
∑
S3it

ω(S, n, ε) Qo−S
(⊕

i∈T

ai = e
)

+
∑
S=it

ω(S, n, ε) Qo−S
(⊕

i∈T

ai = e
)

= 2ε · 1 + (1 − 2ε) ·
1
2

=
1
2

+ ε , (3.146)
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where we used that ∑
S3it

ω(S, n, ε) = 2ε . (3.147)

�

Note that Theorem 3.5.1 directly extends to the case of affine functions f (a≤n).
A function f (a≤n) is called affine if there exists some set T ∈ P([n]) and a bit
b ∈ {0, 1} such that

f (a≤n) = b ⊕
⊕
i∈T

ai . (3.148)

To extend Theorem 3.5.1 to affine functions, one just needs to insert the bit b into
second argument of the δ-function in (3.143).

3.5.2 Attacking random functions — bias the last bit

An important class of functions are random functions since, roughly speaking, most
functions share the properties of random functions. We show that random functions
can be attacked with a relatively simple attack; analogous to the case when the
privacy-amplification function is, e.g., the parity of all n bits, the adversary simply
biases the last bit an by a value of ε into the preferred direction. The intuition behind
the attack is that a random function non-trivially depends on the the last bit an with
probability 1/2.

Definition 13 (Random function). We define a random function fr : {0, 1}n → {0, 1}
as a function which is drawn according to the uniform measure from the set Fn of
all Boolean functions of n bits.

Note that if we denote the uniform measure over the set Fn as QFn then a random
function satisfies

QFn( fr(a≤n) = 0) =
1
2

= QFn( fr(a≤n) = 1) . (3.149)

Theorem 3.5.2. For a random function fr(a≤n) there exists an ordered (ε,S)-divisible
distribution Qo−ε(a≤ne) such that

Qo−ε(QFn( fr)(a≤n) = e) ≥
1
2

+
ε

2
. (3.150)

Note that we use the notation Qo−ε(QFn( fr)(a≤n) = e) to indicate that first the
function fr is drawn according to the uniform distribution from the set of all func-
tions f (a≤n) and then the distribution Qo−ε(a≤ne) is constructed accordingly.
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Proof. For a function f (a≤n) define the set

D f := {a<n : f (a<n, 0) , f (a<n, 1)} . (3.151)

We construct the set {Qo−S(a≤ne)} as follows:

Qo−S(e) =
1
2
, (3.152)

Qo−S(a<n | e) = 2−n+1 (3.153)

Qo−S(an | a<ne) =

{
δ
(
e, f (a≤n)

)
n ∈ S ∩ a<n ∈ D f

1
2 otherwise .

(3.154)

It is easy to see that (3.108) is satisfied by construction through (3.154). Note that
when n ∈ S ∩ a<n ∈ D f , then (3.153) and (3.154) are equivalent to

Qo−S(a≤n | e) = 2−n+1 δ
(
e, f (a≤n)

)
, (3.155)

which, in the average over Qo−S(e), yields (3.107) through the condition a<n ∈ D f .
In the second case of (3.154), (3.107) is satisfied trivially.

It is left to prove (3.150). To analyse Qo−ε(QFn( fr)(a≤n) = e) we distinguish
between two cases:

1. n < S : (3.152)–(3.154) implies that, independently of the choice of function
fr, we have

Qo−S(a≤ne) = 2−(n+1) . (3.156)

Consequently, we have that

Qo−S(QFn( fr)(a≤n) = e) =
∑
a≤n

Qo−S(a≤n) Qo−S(QFn( fr)(a≤n) = e | a≤n)

=
∑
a≤n

2−n Qo−S(QFn( fr)(a≤n) = e | a≤n)

=
∑
a≤n

2−n 1
2

=
1
2
, (3.157)

where we use that, independently of the value fr(a≤n), the bit e is uniformly
random in order to calculate Qo−S(QFn( fr)(a≤n) = e | a≤n)
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2. n ∈ S : From (3.152) and (3.153) it follows that Qo−S(a<ne) = 2−n, i.e.,
a1...an−1e is a string of uniform independent bits that, furthermore, is in-
dependent of the choice of the function fr. From (3.149) also follows that
for

(
fr(a<n, 0), fr(a<n, 1)

)
there are the four (equally likely) possibilities (0, 0),

(1, 1), (0, 1) and (1, 0). In the two cases (0, 0) and (1, 1) we have that a<n < D f ,
and thus

Qo−S( fr(a≤n) = e | a<n) =
1
2
, (3.158)

since by (3.154) the bit e is uniform conditioned on a<n. In the cases (0, 1) and
(1, 0), we have

Qo−S( fr(a≤n) = e | a<n) = 1 , (3.159)

due to (3.154), since then a<n ∈ D f .

We conclude that the constructions (3.152)–(3.154) for the set {Qo−S(a≤ne)} thus
induce a Qo−ε(a≤ne) with

Qo−ε
(
QFn( fr)(a≤n) = e

)
=

∑
S∈P([n])

ω(S, n, ε) Qo−S
(
QFn( fr)(a≤n) = e

)
=

∑
S3n

ω(S, n, ε) Qo−S
(
QFn( fr)(a≤n) = e

)
+

∑
S=n

ω(S, n, ε) Qo−S
(
QFn( fr)(a≤n) = e

)
=

∑
S3n

ω(S, n, ε)
∑
a<n

Qo−S(a<n)Qo−S
(
QFn( fr)(a≤n) = e | a<n

)
+ (1 − 2ε)

1
2

= 2ε
(
1
2

1
2

+
1
2

1
)

+ (1 − 2ε)
1
2

=
1
2

+
ε

2
. (3.160)

We use that ∑
S3n

ω(S, n, ε) = 2ε , (3.161)

and for the fourth equation that (3.158) and (3.159) each happen with probability
1/2 (for each prefix a<n) for random functions. �

Now we quantify the intuition that most functions share the properties of random
functions and a refined analysis of the construction (3.152)–(3.154) allows us to
conclude that for almost all functions the same attack allows the adversary to gain a
(maybe small but) constant knowledge about the output of Alice.
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Theorem 3.5.3. For any given n and 0 < γ1 < 1, there exists for a fraction 1 − γ2

of the set Fn of all Boolean functions f : {0, 1}n → {0, 1} an ordered (ε,S)-divisible
distribution Qo−ε(a≤ne) such that

Qo−ε( f (a≤n) = e) ≥
1
2

+
(1 − γ1) ε

2
, (3.162)

with

γ2 = e−γ
2
12n−3

. (3.163)

Proof. The proof follows from the attack (3.152)–(3.154) on random functions via
an application of a Chernoff bound [Che52]. In Case 2 of the proof of Theorem 3.5.2
the probability Qo−S( fr(a≤n) = e | a<n) depends on whether

(
fr(a<n, 0), fr(a<n, 1)

)
is

either in the cases (0, 0) and (1, 1), then (3.158) holds, or in the cases (0, 1) and
(1, 0) and then (3.159) holds; in other words if a<n ∈ D f or not. For a specific func-
tion f (a≤n) the knowledge of the adversary implied by the attack (3.152)–(3.154)
only depends the size of the set D f . With respect to the (uniform) average over all
functions QFn( fr) the probability that a<n ∈ D f is 1/2, as we argued in the fourth
equation of (3.160), and thusD f is on average half the size of the set of all a<n, i.e.,
|D f | = 2n−2. Now we use a particular Chernoff bound from [AV79] to provide an
(exponentially small) upper bound on the probability (with respect to the uniform
measure QFn) that |D f | is below a constant fraction of its expectation value

QFn

(
|D fr | ≤ (1 − γ1)2n−2

)
≤ e−γ

2
1

2n−2
2 . (3.164)

Consequently, with probability 1 − e−γ
2
1

2n−2
2 (with respect to the uniform measure

QFn( fr)) we obtain (3.162), following the steps of (3.160). �

3.5.3 Prefix-code attacks and their limits

In this section we construct a set of distributions Qo−ε(a≤ne) that we call “prefix-code
attacks”. This is the set of attacks introduced in [AFTS12], but our presentation is
simpler and allows for a simple generalisation to the dynamic TONS adversary as
well as systems with more parties, higher dimensions and arbitrary input alphabets.
Similar to the attack on linear functions in Section 3.5.1, the idea is that for every
string a≤n the adversary biases a certain bit ai in his preferred direction by a value
of ε. In the attacks in Section 3.5.1 for the function f (a≤n) =

⊕
i∈T ai the bit ait

was biased by a value of ε and the direction of the bias depended on the party of
the previously obtained bits ai1 , ..., ait . Here, also the choice of which bit ai will
depend on the previously obtained bits a1, a2, ..., ai−1. Note that as a consequence
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of Theorem 3.4.4, we may, without loss of generality, restrict Alice to the use of
balanced functions f (a≤n) only.

Definition 14 (Prefix-code). We define a prefix-code C to be a set of codewords
C = {c1, c2, ..., ck} with cm ∈ {0, 1}`, 0 ≤ ` ≤ n − 1, 1 ≤ m ≤ k such that for any a≤n

the code C contains a unique cm ∈ C that is a prefix of a≤n.

Note that such a code saturates the Kraft inequality [Kra49], i.e.,

k∑
m=1

2−|cm | = 1 . (3.165)

Definition 15 (Influence). We define the influence ∆ f (a<i) of ai given the prefix a<i

on the function f (a≤n) as

∆ f (a<i) :=
1
2

(
Q( f (a≤n) = 0 | a<i, ai = 0) − Q( f (a≤n) = 0 | a<i, ai = 1)

)
, (3.166)

where Q(a≤n) = 2−n.

Note that for the uniform distribution Q(a≤n) we have

Q( f (a≤n) = 0 | a<i) =
1
2
(
Q( f (a≤n) = 0 | a<i, ai = 0) + Q( f (a≤n) = 0 | a<i, ai = 1)

)
.

(3.167)

and, therefore,

Q( f (a≤n) = 0 | a<i, ai) = Q( f (a≤n) = 0 | a<i) + (−1)ai∆ f (a<i) . (3.168)

Theorem 3.5.4. For any prefix code C and any balanced function f (a≤n) there exists
an ordered (ε,S)-divisible distribution Qo−ε(a≤ne) such that

Qo−ε( f (a≤n) = e) =
1
2

+ 2ε ·
∑

m

2−|cm ||∆ f (cm)| . (3.169)

Proof. We construct the set of ordered S-influenceable distributions {Qo−S(a≤ne)}.
For any S ∈ P([n]) let Qo−S(a≤ne) be defined as

Qo−S(e) =
1
2
, (3.170)

Qo−S(ai | a<ie) =

 1
2

(
1 + sign(∆ f (cm))(−1)e⊕ai

)
if ∃m : a<i = cm ∩ i ∈ S

1
2 otherwise ,

(3.171)
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where sign(x) is the signum function, defined as

sign(x) :=
{
−1 x < 0
1 otherwise .

(3.172)

Conditions (3.107) and (3.108) can be easily verified. (3.171) is equivalent to

Qo−S(a≤n | e) =

{
2−n ·

(
1 + sign(∆ f (cm))(−1)e⊕ai

)
∃i,m : i ∈ S ∩ a<i = cm

2−n otherwise ,
(3.173)

and (3.107) follows by averaging (3.173) over e. Equation (3.108) holds directly
by construction (3.171). In order to complete the proof we need to show that our
construction (3.170) and (3.171) for the set {Qo−S} for S ∈ P([n]) satisfies (3.169).
The argument is analogous to the one in Section 3.5.1 for the equations (3.146) and
(3.147). For the Qo−S(a≤ne) that satisfy the condition i ∈ S in (3.171) we use (3.168)
and obtain

Qo−S( f (a≤n) = 0 | a<i = cm, e) = Q( f (a≤n) = 0 | a<i) + (−1)e|∆ f (cm)| , (3.174)

for the uniform distribution Q(a≤n). In the decomposition

Qo−ε(a≤ne) =
∑
S∈P([n])

ω(S, n, ε) Qo−S(a≤ne) , (3.175)

the distributions Qo−S(a≤ne) that satisfy the condition i ∈ S in (3.171) have weight
exactly 2ε. We conclude that for balanced functions f (a≤n) we have

Qo−ε( f (a≤n) = 0 | e) =

k∑
m=1

Qo−ε(a<i = cm|e) Qo−ε( f (a≤n) = 0 | a<i = cm, e)

=

k∑
m=1

2−cm Qo−ε( f (a≤n) = 0 | a<i = cm, e)

=

k∑
m=1

2−cm

(
(1 − 2ε) Q( f (a≤n) = 0 | a<i)

+ 2ε
(
Q( f (a≤n) = 0 | a<i) + (−1)e|∆ f (cm)|

))
=

1
2

+ 2ε
k∑

m=1

2−cm (−1)e |∆ f (cm)| , (3.176)
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a1

a2

a3

a4

0 0 1 1 1 0 1 0 0 0 0 01 11 1

f(a1a2a3a4 = 0110) = 1

a1 = 0 a1 = 1

�f (1) = 1/4

Figure 3.4. Example of an unbalanced function f . The branches of the tree rep-
resent the string inputs a1a2a3a4 the leaves of the tree the values of the function
f (a1a2a3a4). The red marks indicate (one possibility of) an optimal prefix-code C
with codewords {00, 010, 011, 1} that maximises the expectation value of |∆ f (cm)|.

and, finally, that

Qo−ε( f (a≤n) = e) =
1
2

(
Qo−ε( f (a≤n) = 0 | e = 0) + 1 − Qo−ε( f (a≤n) = 0 | e = 1)

)
=

1
2

+ 2ε
k∑

m=1

2−cm |∆ f (cm)| . (3.177)

�

We will continue with the argument presented in [AFTS12], which implies the
impossibility of super-linear privacy amplification against a TONS-adversary.

Theorem 3.5.5. [AFTS12] Assume that f (a≤n) : {0, 1}n → {0, 1} is balanced, i.e.,
|{a≤n : f (a≤n) = 0}| = 2n−1, then for every a≤n there exists a prefix a<i with i ∈ [n],
such that

|∆ f (a<i)| ≥
1
2n

. (3.178)
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Proof. For balanced functions, we have Q( f (a≤n) = 0) = 1/2 and, by applying
(3.168) recursively i times, we obtain

Qo−ε( f (a≤n) = 0 | a≤i) = Qo−ε( f (a≤n) = 0 | a<i) + (−1)ai∆ f (a<i)

=
1
2

+

i∑
j=1

(−1)a j∆(a< j) . (3.179)

For all a≤n, we have trivially Q( f (a≤n) = 0) | a≤n) = 0 (or = 1), which implies

1
2

=

∣∣∣∣∣Qo−ε( f (a≤n) = 0 | a≤n) −
1
2

∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

i=1

(−1)ai∆ f (a<i)

∣∣∣∣∣∣∣ ∀a≤n . (3.180)

�

Corollary 3.5.6. For any balanced function f (a≤n), by Theorem 3.5.5 there must
exist a, not necessarily unique, prefix code C∗ = {c1, c2, ..., ck}, such that

1
2

k∑
m=1

2−|cm ||∆ f (cm)| ≥
1

2n
. (3.181)

Note that for any prefix code
∑k

m=1 2−|cm | = 1.

Theorem 3.5.7. For any function f (a≤n) there exists an ordered (ε,S)-divisible dis-
tribution Qo−ε(a≤ne), such that

Qo−ε( f (a≤n) = e) ≥
1
2

+
ε

n
. (3.182)

Proof. Theorem 3.5.7 follows from Corollary 3.5.6 and Theorem 3.5.4 for balanced
functions, and thus via Theorem 3.4.4 also for unbalanced functions. �

Another direct consequence of Theorem 3.5.4 is that privacy amplification is
impossible using functions that are composed of affine functions glued together by
prefix-codes.

Definition 16 (Prefix-coded functions). A function f (a≤n) : {0, 1}n :→ {0, 1} is
called a prefix-coded affine function if there exists a prefix code C = {c1, c2, ..., ck}

and corresponding set of bits B = {b1, b2, ..., bk} such that

f (a≤n) =

k∑
m=1

δ(a≤|cm |, cm) · (a|cm+1 ⊕ bm) . (3.183)
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In the definition of a prefix-coded function (3.183) implies that

k∑
m=1

2−|cm ||∆ f (cm)| =
k∑

m=1

2−|cm |
1
2

=
1
2
, (3.184)

and consequently also prefix-coded functions, which are a generalisation of affine
functions, cannot be used for privacy amplification:

Corollary 3.5.8. Impossibility of privacy amplification using prefix-coded affine
functions. Let f (a≤n) : {0, 1}n :→ {0, 1} be a prefix-coded function, then there exists
a Qo−ε(a≤ne) such that

Qo−ε( f (a≤n) = e) =
1
2

+ ε . (3.185)

We want to end this section by proving a stronger bound than the one from Theorem
3.5.7 that for a large class of boolean functions, the monotonic functions.

Definition 17 (Monotonic functions). A function f (a≤n) is monotonic if for any
i ∈ [n] it holds that

f (a<i, ai = 0, a>i) ≤ f (a<i, ai = 1, a>i) ∀a<i, a>i . (3.186)

For monotonic functions we can make use of the so-called KKL Theorem by
Kahn, Kalai and Linial [KKL88], [O’D14] on influences of individual variables on
boolean functions. In the present context a simplified version of the theorem states
that

Theorem 3.5.9. Let f (a≤n) be a monotonic balanced function. Then there must exist
at least one i ∈ [n] such that

2−i+1
∑
a<i

∆ f (a<i) ≥ c
log(n)

n
, (3.187)

for some constant c > 0.

Together with Theorem 3.5.4 this yields the following theorem:

Theorem 3.5.10. For any monotonic balanced function f (a≤n) there exists an or-
dered (ε,S)-divisible distribution Qo−ε(a≤ne), such that

Qo−ε( f (a≤n) = e) ≥
1
2

+ 2 c ε
log(n)

n
, (3.188)

where the constant c is the one from Theorem 3.5.9.
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3.5.4 Majority and “prefix-code” attacks vs. the “maximum-
likelihood” attack.

In this section we investigate in more detail the case of a specific set of functions,
the majority functions, defined in (3.86) (for odd n). The majority functions are,
due to the high degree of symmetry (relatively) easy to analyse as they are only
functions of the Hamming weight of a≤n. First we will inspect the performance
of “prefix-code” attacks introduced in Section 3.5.3. We will see that for large n
this performance scales with θ(ε/

√
n). Then we will introduce another construction

of the set {Qo−S(a≤ne)}, which we denote as a “maximum-likelihood” attack. Intu-
itively, for each Qo−S(a≤ne), the adversary approximates the majority function on the
whole string a≤n with the (partial) majority on the substring aS. This attack performs
far better and proves that with majority functions no privacy amplification against a
TONS adversary can be achieved at all.

Theorem 3.5.11. Let the distribution Qo−ε(a≤ne) be a “prefix-code attack” con-
structed as in the proof of Theorem 3.5.4 for the majority function Majn(a≤n). Then,
for the optimal choice of a prefix-code C = {c1, ..., ck} and bits {a∗(1), ..., a∗(k)}, the
performance of this attack is

Qo−ε(Majn(a≤n) = e) =
1
2

+ θ

(
ε
√

n

)
. (3.189)

Proof. Independent of the choice of prefix-code C = {c1, c2, ..., ck}, the optimal
choice of bits {a∗(1), ..., a∗(k)} is always a∗(m) = 0 since

∆Majn(a<i) ≥ 0 ∀a<i, 1 ≤ i ≤ n . (3.190)

The distributions Qo−S(a≤n) constructed in Theorem 3.5.4 by

Qo−S(e) =
1
2
, (3.191)

Qo−S(ai | a<ie) =

 1
2

(
1 + sign(∆ f (cm)) (−1)e⊕ai

)
if ∃m : a<i = cm ∩ i ∈ S

1
2 otherwise ,

(3.192)

have the following property: for any i ∈ [n] the conditioned distribution of a single
bit Qo−S(ai | a<ie) is uniform, except if a<i ∈ C ∩ i ∈ S, then Qo−S(ai = e | a<ie) = 1.
For each a≤n the condition a<i ∈ C ∩ i ∈ S holds in the composition

Qo−ε(a≤ne) =
∑
S

ω(S, n, ε) Qo−S(a≤ne) , (3.193)
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with probability 2ε, and with probability (1 − 2ε) the string a≤n is uniform, i.e.,
Qo−ε(a≤n | e) = 2−n. Thus, in Qo−ε(a≤n | e) with probability 2ε a single bit ai is equal
to e and all other bits a,i are uniformly distributed, while, otherwise, the whole
distribution is uniform. Thus,

Qo−ε(Majn(a≤n) = e) =
∑

e

Qo−ε(e) Qo−ε(Majn(a≤n) = e | e)

= (2ε) · 2−n+1

n−1
2∑

i=0

(
n − 1

i

)
+ (1 − 2ε)

1
2

= (2ε)
(
1
2

+ 2−n

(
n − 1

n−1
2

))
+ (1 − 2ε)

1
2

=
1
2

+ ε · 2−n+1
(
n − 1

n−1
2

)
n→ ∞ ≈

1
2

+
ε
√

n
, (3.194)

where the last line follows from Stirling’s approximation. �

Now we derive another type of attacks on majority functions that we refer to
as “maximum-likelihood” attacks. In case of the majority, this essentially boils
down to constructing a distribution Qo−S(a≤ne) that, out of the view of the adversary,
approximates Majn(a≤n) with Majs(aS).

Theorem 3.5.12. For any odd n and any S ∈ P([n]) where s = |S| is odd, there
exists an ordered S-influenceable distribution Qo−S(a≤ne), see (3.107) and (3.108),
with

Qo−S(Majn(a≤n) = e) = Qo−S(Majn(a≤n) = Majs(aS))

= 1 −

s−1
2∑

h1=max(0, 1−n
2 +s)

(
s

h1

) n−s∑
h2= n−1

2 −h1

(
n − s

h2

)
. (3.195)

Proof. We prove this by construction of the set {Qo−S(a≤ne)} as

Qo−S(e) =
1
2

(3.196)

Qo−S(a≤n | e) = 2−n+1 · δ(MajS(aS), e) . (3.197)
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S = {2, 3, n � 1}
(a1, a2, a3, ..., an�1, an) 2r {0, 1}n

best guess�!

(a1, a2, a3, ..., an�1, an) 2r {0, 1}n

(?, a2, a3, ..., an�1, ?) e

(a1/?, a2/?, a3/?..., an/?) best guess�! e

2" 2" 2" 2" 2"

Qo�"(Maj(an) = e)

Qo�S(Maj(an) = e)

Figure 3.5. Intuition behind the majority attacks {Qo−S(a≤ne)} constructed in The-
orem 3.5.12. In the upper scenario we depict the knowledge the adversary obtains
in the attack (3.196) and (3.197) on Majn(a≤n) for S = 2, 3, n − 1. The string a≤n

is drawn uniformly at random and then the bits in aS are given to the adversary.
His guess for Majn(a≤n) is the majority of the bits aS that he receives Majs(aS),
see (3.197). The lower scenario depicts the intuition behind the attack Qo−ε on the
majority of n bits which is derived from the set {Qo−S}. Here again a≤n is drawn
uniformly at random and but this time each bit ai are given to the adversary inde-
pendently with probability 2ε.
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Uniformity of Alice’s string a≤n (3.107) follows directly from (3.196), (3.197), and
the fact that MajS(aS) is a balanced function. Equation (3.108) follows from (3.197)
and that if i < S, then MajS(aS) is (by definition) independent of ai. Therefore, we
have

Qo−S(ai | a<ie) =

∑
a>i

Qo−S(a≤i, a>i | e)∑
a≥i

Qo−S(a<i, a≥i | e)

=
|{a>i : MajS(a≤i, a>i) = e}|
|{a≥i : MajS(a<i, a≥i) = e}|

=
1
2
. (3.198)

We calculate Eve’s guessing probability as

Qo−S(Majn(a≤n) = e) = 1 − Qo−S(Majn(a≤n) , e)

= 1 −
∑

e

Qo−S(e) Qo−S(Majn(a≤n) , e | e)

(3.196),(3.197)
⇒ = 1 −

∑
e

2−n
∑
aS

| {a
S

: Majs(aS) = e ∩ Majn(aS, aS) = e}|

= 1 − 2−n+1
∑
aS

| {a
S

: Majs(aS) = 0 ∩ Majn(aS, aS) = 1}|

= 1 − 2−n+1

s−1
2∑

h1=max(0,s− n−1
2 )

(
s

h1

) n−s∑
h2= n+1

2 −h1

(
n − s

h2

)
, (3.199)

where we used for the fourth equality the fact that the majority function is odd. The
idea behind the last equation is to count how many strings aS have Hamming weight
h1 and then count how many strings a

S
have Hamming weight h2 ≥ (n + 1)/2 − h1.

Note that the latter is only possible if

n − s ≥
n + 1

2
− h1 ⇔ h1 ≥ s −

n − 1
2

. (3.200)

�

The probability Qo−S(Majn = e) in the attack presented in Theorem 3.5.12 only
depends on the size of S, i.e., s := |S|. For an ordered (ε,S)-divisible distribution
Qo−ε(a≤ne) we have

Qo−ε(a≤ne) =
∑
S∈P([n])

ω(S, n, ε) Qo−S(a≤ne) . (3.201)
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For large n, almost all of the probability weight in the composition (3.109) of
Qo−ε(a≤ne) is concentrated on Qo−S(a≤ne) with s ∈ [(1 − δ) · εn, (1 + δ) · εn]) for
δ ∈ θ(1/

√
n). For s odd we let Qo−S be as in Theorem 3.5.12 and for s even we let

Qo−S be as an Qo−S\{i} in Theorem 3.5.12 for some arbitrary i ∈ S. In the limit of
large n we have then (through the concentration of measure induced by the CLT)

Qo−ε(Ma jn(a≤n) = e) =
∑
S∈P([n])

ω(S, n, ε) Qo−S(Ma jn(a≤n) = e)

n→∞
≥ Qo−S′(Ma jn(a≤n) = e) , (3.202)

for some S′ with s′ = (ε − δ) · n for any δ > 0.

Theorem 3.5.13. Let |S| = s = c n for some constant 0 < c < 1 such that s is odd.
Then there exists a series of ordered S-influenceable distributions {Qo−S(a≤ne)} such
that

Qo−S(Majn(a≤n) = e) n→∞
= 1 −

arctan
(√

1−c
c

)
π

(3.203)

Proof. Let the series of {Qo−S(a≤ne)} be defined by (3.196) and (3.197) for increas-
ing n. By (3.199) we have

Qo−S(Majn(a≤n) = e) = 1 − 2

s−1
2∑

h1=max(0,s− n−1
2 )

2−s

(
s

h1

) n−s∑
h2= n+1

2 −h1

2−n+s

(
n − s

h2

)

= 1 − 2
Min( s−1

2 , n−s
2 −1)∑

h1=0

2−s

(
s

s−1
2 − h1

) n−s∑
h2=h1+1

2−n+s

(
n − s

−n+s
2 + h2

)
,

(3.204)

where in the last line h1 and h2 resemble the distance in Hamming weight of the
strings aS and a

S
from the string with half the bits 1

h1 := −
s − 1

2
+

s∑
i=1

a ji ji ∈ S (3.205)

h2 := −
n − s

2
+

n−s∑
i=

aki ki ∈ S . (3.206)

We define h′1 := (h1 + 1/2)/
√

s and h′2 := h2/
√

n − s and if we set s = c n and
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h2 = h1 + 1, we obtain

h′2 =
h2

√
(1 − c) n

=
h1 + 1
√

(1 − c) n

=

√
c

(1 − c)
h′1 +

1
2
√

(1 − c) n
. (3.207)

Then, the central limit theorem (CLT) and (3.204) imply

Qo−S(Majn(a≤n) = e) =1 − 2
Min( s−1

2 , n−s
2 −1)∑

h1=0

2−s

(
s

s−1
2 − h1

) n−s∑
h2=h1+1

2−n+s

(
n − s

−n+s
2 + h2

)

=1 − 2
Min( c·n−1

2 , (1−c)n
2 −1)∑

h1=0

2−c·n

(
c · n

c·n−1
2 − h1

) n−s∑
h2=h1+1

2−(1−c)n
(

(1 − c)n
−(1−c)n

2 + h2

)
CLT
⇒

n→∞
= 1 − 2

∫ ∞

0

1
√

2π
e−

x2
1
2

∫ ∞

√
c

1−c x1

1
√

2π
e−

x2
2
2 dx2 dx1

=1 −
1
π

∫ ∞

0
e−

x2
1
2

∫ ∞

√
c

1−c x1

e−
x2
2
2 dx2 dx1

=1 −
arctan

(√
1−c

c

)
π

. (3.208)

�

A direct consequence of Theorem 3.5.13 and (3.202) is

Theorem 3.5.14. For any δ > 0, there exists a series of {Qo−ε(a≤ne)} such that

Qo−ε(Ma jn(a≤n) = e)
n→∞
≥ 1 −

arctan
(√

1−(ε−δ)
(ε−δ)

)
π

. (3.209)

3.6 Generalisation to a dynamic TONS adversary

In this section we show that the construction of TONS attacks from classical distri-
bution Qo−S(a≤ne) in Section 3.4.1 can be generalised to dynamic TONS attacks, see
(2.3) and (2.4) for a comparison of the two. This will become a crucial step to derive
bounds on distillation protocols in Chapter 4. We proceed in two steps. First, we
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0.05 0.10 0.15 0.20 0.25

0.55

0.60

0.65

Figure 3.6. Comparison of the knowledge of the adversary about majority in the
limit of large n (the upper line) with his knowledge about a single bit ai (the lower
line). The upper line represents the function 1 − arctan(

√
(1 − ε)/ε)/π, see (3.203),

and the lower line 1/2 + ε, see Theorem 3.1.3. The x-axis corresponds to the values
for ε between 0 and 1/4. We observe that the majority function is not useful for
TONS privacy amplification: the knowledge of the adversary about Majn(a≤n) is
larger than about the individual bits ai.
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show in Theorem 3.6.1 that the distributions Po−S(a≤nb≤ne | x≤ny≤n) we constructed
in Theorem 3.4.2 from classical distributions Qo−S(a≤ne) satisfy more than just the
TONS conditions but hold for any dynamic order {ki} on Bob’s side. Then, we show
in Theorem 3.6.2 that for any function f (a≤n) a dynamic TONS attack can be con-
structed from a standard TONS attack on a function f̃ , which is constructed from
f (a≤n) via suitable permutations of the input strings.

Theorem 3.6.1. Fix an arbitrary dynamic order {ki} for Bob, i.e., let the functions
ki(bk<i) be arbitrary, and fix Alice dynamic order to be trivial, i.e., for the set { ji} let

ji(a j<i) = i ∀a j<i , i ∈ [n] . (3.210)

For any set S ⊆ [n] the distributions Po−S(a≤nb≤ne | x≤ny≤n) constructed in Theorem
3.4.2 by (3.118)-(3.120) satisfy the dynamic time-ordered no-signalling conditions
with respect to the dynamic orders { ji} and {ki}.

Proof. We need to show that Po−S(a≤nb≤n | ex≤ny≤n) has a well-defined marginal dis-
tribution Po−S(a≤iAbk≤iB

| ex≤iAyk≤iB
) on subsystems A≤iA Bk≤iB

for any 0 ≤ iA, iB ≤ n. To
prevent us from entering a horrible index jungle, let us define some sets. Define the
set Tbk<iB

for the string bk<iB
= bk1 ...bkiB−1 as the indices of the “past” iB systems of

Bob:

Tb<iB
:= {i : i ∈ {k1, k2(bk1), ..., kiB(bk<iB

)}} , (3.211)

and T bk<iB
as the “future” n − iB systems

T b<iB
:= [n]\Tb<iB

. (3.212)

We divide both sets Tb<iB
and T b<iB

again into two subsets, the intersection with the
set [iA] and its complement

T 1 := Tb<iB
∩ [iA] (3.213)

T 2 := T b<iB
∩ [iA] (3.214)

T 3 := Tb<iB
∩ ([n]\[iA]) (3.215)

T 4 := T b<iB
∩ ([n]\[iA]) . (3.216)

Recall the construction (3.118) to (3.120) of Po−S(a≤nb≤ne | x≤ny≤n) in Theorem 3.4.2
from the distribution Qo−S(a≤ne | x≤n) and take a close look at (3.120)

Po−S(aibi | a<ib<ix≤ny≤ne) =

{
U(bi | yi) Qo−S(ai | a<ie) i ∈ S
PR(aibi | xiyi) otherwise .

(3.217)
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The right-hand side is completely independent of b<i, x,i, and y,i. Hence, we do not
need to condition on these variables

Po−S(aibi | a<ib<ix≤ny≤ne) = Po−S(aibi | a<ixiyie) . (3.218)

Let us also recall from the proof of Theorem 3.4.2 that∑
aibi

Po−S(aibi | a<ixiyie) = 1 (3.219)∑
ai

Po−S(aibi | a<ixiyie) = U(bi | xi) (3.220)∑
bi

Po−S(aibi | a<ixiyie) = Qo−S(ai | a<ie) . (3.221)

We are ready to show that Po−S(a≤nb≤n | ex≤ny≤n) has a well-defined marginal distri-
bution Po−S(a≤iAbk≤iB

| ex≤iAyk≤iB
) on subsystems A≤iA Bk≤iB

for any 0 ≤ iA, iB ≤ n:∑
a>iA bk>iB

P(a≤nb≤n | ex≤ny≤n)

=
∑

a>iA bk>iB

∏
j∈[n]

Po−S(aibi | a<ixiyie)

=
∑
bk>iB

∏
j∈[iA]

Po−S(aibi | a<ixiyie)
∏

j∈[n]/[iA]

U(bi | yi)

=
∏
j∈T 1

Po−S(aibi | a<ixiyie) ·
(∑

bT2

∏
j∈T 2

Po−S(aibi | a<ixiyie)
)

·

(∑
bT4

∏
j∈T 3∩T 4

U(bi | yi)
)

=
∏
j∈T 1

Po−S(aibi | a<ixiyie) ·
( ∏

j∈T 2

Qo−S(ai | a<ie)
)
·
∏
j∈T 3

U(bi | yi)

=: Po−S(a≤iAbk≤iB
| ex≤iAyk≤iB

) , (3.222)

where we use (3.220) for the second equation and the definition of the sets T 1 to T 4

(3.213) to (3.216) for the third equation. For the fourth equation we use (3.219) and
(3.221) and, finally, since the right-hand side of the fourth equation is independent
of x>iA and yk>iB

it forms a well-defined marginal on systems A≤iA Bk≤iB
. �

Theorem 3.6.2. Let P(a≤nb≤ne | x≤ny≤n) be a TONS attack constructed according to
Theorem 3.4.2 on a function f̃ (a≤n) that we will specify below. For any choice of
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dynamic orders { ji} and {ki} and any function f (a≤n) there exists a dynamic TONS
attack P′(a≤nb≤ne | x≤ny≤n) such that

P′( f (a≤n) = e) = P( f̃ (a≤n) = e) . (3.223)

The function f̃ is defined by

f̃ (a1, a2, ..., an) := f (a′1, a
′
2, ..., a

′
n) (3.224)

with a′i = a ji .

Note that f̃ (a1, a2, ..., an) is well-defined as for any a≤n, the set { j1, j2(a j1), ..., jn(a j<n)}
forms a permutation of the set {1, 2, ..., n}.

Proof. The proof follows from Theorem 3.6.1 and the construction

P′(e) = P(e) (3.225)

P′(a≤nb≤n | ex≤ny≤n) =
∏

i

P′(a jib ji | a j<iex jiy ji) (3.226)

P′(a jib ji | a j<iex jiy ji) = P(a′ib
′
i | a

′
<iex′iy

′
i) , (3.227)

again with a′i = a ji . Note that for the construction (3.225) to (3.227) the dynamic
TONS conditions (2.4) for the dynamic orders { ji} and {ki} follow for the distribution
P′(a≤nb≤ne | x≤ny≤n) from Theorem 3.6.1. Furthermore, note that

P′(a j≤ib j≤i | ex j≤iy j≤i) = P(a′≤ib
′
≤i | ex′≤iy

′
≤i) , (3.228)

with a ji = a′i and, similarly, for the other entries. As P(a≤ib≤i | ex≤iy≤i) has a well-
defined marginal on the systems A≤iA Bk≤iB

for any iA, iB ∈ [n] and arbitrary dynamic
order {ki}, so does P′(a≤ib≤i | ex≤iy≤i) on the systems A≤ jiA

Bk≤iB
. The proof of (3.223)

follows from the construction (3.225) to (3.227) and the definition of f̃ (3.224)

P′( f (a≤n) = e) = P′(e) P′( f (a≤n) = e | e)

= P(e) P( f (a′≤n) = e | e)

= P(e) P( f̃ (a≤n) = e | e)

= P( f̃ (a≤n) = e) , (3.229)

which completes the proof. �
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3.7 An analogous construction of ABNS attacks
from a classical game

Although it was already known that privacy amplification against an ABNS adver-
sary is impossible we present, for the sake of comparison, a construction of ABNS
attacks from a classical game which is analogous to the construction of TONS at-
tacks in Section 3.4.1. Again, we construct classical distributions QS(a≤nn) that
induce ABNS attacks on product distributions of U(aibi | xiyi) for i ∈ S and perfect
PR(aibi | xiyi)-boxes for i ∈ S. Then, a weighted sum Qε(a≤ne) of the distributions
QS(a≤nn) induces an ABNS-attack on PRn

ε(a≤nb≤n | x≤ny≤n).
As the TONS conditions are stronger no-signalling conditions than the ABNS

conditions (compare Definitions 4 and 5) the conditions on the distributions QS(a≤nn)
are also weaker (see Figure 3.7). In Section 3.7.3 we show that this construction
of ABNS attacks retrieves the impossibility result for ABNS privacy amplification
of Hänggi, Renner and Wolf. We argue that this is a strong indication that, since
the analogous construction for ABNS attacks is optimal (up to a constant factor),
our construction of TONS attacks should be also optimal. Consequently, if TONS
privacy amplification is impossible, we conjecture that our construction of TONS
attacks from Section 3.4.1 is general enough to retrieve this result.

3.7.1 From a classical game over a weighted set of distribu-
tions to ABNS attacks

Consider a distribution QS(a≤ne) that has to satisfy two properties, the marginal
distribution on a≤n must be uniform and only the bits aS can be influenced (i.e.,
made non-uniform) when conditioned on Eve’s bit e. On the other side, the marginal
distribution on the bits a

S
must remain uniform even when conditioned on e. More

formally, we have:

Definition 18 (S-influenceable distribution). For the subset S ∈ P([n]) we define an
S-influenceable distribution QS(a≤ne) : {0, 1}n+1 → R as a probability distribution
that satisfies uniformity on a≤n∑

e

QS(a≤ne) = 2−n ∀a≤n , (3.230)

and

QS(a
S
| e) = 2−|S| ∀a

S
, e . (3.231)
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S = {2, 3, n � 1}

Qo�S(a1a2a3...an�1an|e)QS(a1a2a3...an�1an|e)

QS(a1a2a3...an�1an) = 2�n = Qo�S(a1a2a3...an�1an)

bits remain uniform!

may depend on all other bits may depend only on previous bits

Figure 3.7. Comparison of S-influenceable distributions QS(a≤ne), which induce
ABNS attacks, with ordered S-influenceable distributions Qo−S(a≤ne), which induce
TONS attacks, for the example S = {2, 3, n − 1}. For S-influenceable distributions
QS(a≤ne), each of the bits ai, i ∈ S, can be influenced depending on all other bits ai.
However, for ordered S-influenceable distributions Qo−S(a≤ne), each of the bits ai,
i ∈ S, can be influenced depending only on the bits a<i.

Analogue to Definition 12 we define the weighted sum over S-influanceable distri-
butions as as an (ε,S)-divisible distribution.

Definition 19 ((ε,S)-divisible distribution). Define an (ε,S)-divisible distribution
as a distribution Qε(a≤ne) : {0, 1}n+1 → R if there exists as set {QS(a≤ne)} containing
each S ∈ P([n]), such that

Qε(a≤ne) =
∑
S∈P([n])

ω(S, n, ε) QS(a≤ne) , (3.232)

with weights

ω(S, n, ε) := (1 − 2ε)n−|S|(2ε)|S| . (3.233)

Now let us consider the following privacy amplification game between Alice and
Eve. First let Alice choose a function f (a≤n) and hand it to Eve. Then Eve constructs
an (ε,S)-divisible distribution Qε(a≤ne). Then draw the string a≤ne according to the
distribution Qε(a≤ne). Eve wins if f (a≤n) = e, Alice wins otherwise. In Section 3.7.3
we show that Eve can always win the game with probability at least 1/2+ε/2, a con-
siderable improvement to the best-known lower bound 1/2 + ε/n for the analogous
game for ordered (ε,S)-divisible distributions Qo−ε(a≤ne).

Theorem 3.7.1. Any S-influenceable distribution QS(a≤ne) can be extended to an
ABNS-attack PS(a≤nb≤ne | x≤ny≤n) on the systems A≤nB≤n with distribution

PS(a≤nb≤n | x≤ny≤n) :=
∏
i∈S

U(aibi | xiyi)
∏
i∈S

PR(aibi | xiyi) . (3.234)
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Proof. We construct PS(a≤nb≤ne | x≤ny≤n) as:

PS(e) = QS(e) , (3.235)

PS(a≤nb≤n | x≤ny≤ne) =
∏
i∈S

PR(aibi | xiyi) PS(aSbS | aSb
S

x≤ny≤ne) , (3.236)

PS(aSbS | aSb
S

x≤ny≤ne) = QS(aS | aSe)
∏
i∈S

U(bi | yi) . (3.237)

We have to show that (3.235)-(3.237) implies that PS(a≤nb≤ne | x≤ny≤n)

1. satisfies the ABNS-conditions,

2. has the correct marginal on systems A≤nB≤n:∑
e

PS(a≤nb≤ne | x≤ny≤n) =
∏
i∈S

U(aibi | xiyi)
∏
i∈S

PR(aibi | xiyi) , (3.238)

3. and has the correct marginal on systems A≤nE (which must be independent
also of x≤n): ∑

b≤n

PS(a≤nb≤ne | x≤ny≤n) = QS(a≤ne) . (3.239)

We start with the ABNS conditions, see Definition 4. We need to show that the
systems A≤n and B≤n have well-defined marginal distributions PS(a≤n | ex≤n) and
PS(b≤n | ey≤n), respectively: From (3.237), we obtain∑

bS

PS(aSbS | aSb
S

x≤ny≤ne) =
∑
bS

∏
i∈S

U(bi | yi) QS(aS | aSe)

= QS(aS | aSe) , (3.240)

which, together with (3.236), implies no-signalling from Bob to Alice∑
b≤n

PS(a≤nb≤n | x≤ny≤ne) =
∑
b
S

∏
i∈S

PR(aibi | xiyi) QS(aS | aSe)

= 2−n+|S|QS(aS | aSe)

= QS(a≤n | e)

=: PS(a≤n | ex≤n) . (3.241)
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Note that (3.241) and (3.235) already impliy the correct marginal Q(a≤ne) on the
systems A≤nE:

∑
b≤n

PS(a≤nb≤ne | x≤ny≤n) =
∑
b≤n

PS(a≤nb≤n | x≤ny≤ne) P(e)

= QS(a≤n | e) QS(e)

= QS(a≤ne) ∀x≤n, y≤n . (3.242)

No-signalling from Alice to Bob follows directly by construction (3.236) and
(3.237):

∑
a≤n

PS(a≤nb≤n | x≤ny≤ne) =
∑
a≤n

∏
i∈S

PR(aibi | xiyi) PS(aSbS | aSb
S

x≤ny≤ne)

=
∑
a
S

∏
i∈S

PR(aibi | xiyi)
∑
aS

PS(aSbS | aSb
S

x≤ny≤ne)

= 2−n+s
∑
aS

U(bS | yS) QS(aS | aSe)

= 2−n . (3.243)

To finish the proof, we need to show (3.238): First note that (3.230) and (3.231)
together imply

∑
e

QS(a≤ne) =
∑

e

QS(e) QS(a
S
| e) QS(aS | aSe)

= 2−n+s
∑

e

QS(e) QS(aS | aSe)

= 2−n

⇒
∑

e

QS(e) QS(aS | aSe) = 2−s . (3.244)
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Together with the construction rules (3.235) to (3.237), we obtain∑
e

PS(a≤nb≤ne | x≤ny≤n) =
∑

e

PS(e) PS(a≤nb≤n | ex≤ny≤n)

=
∏
i∈S

PR(aibi | xiyi)
∑

e

QS(e) PS(aSbS | aSb
S

x≤ny≤ne)

=
∏
i∈S

PR(aibi | xiyi) U(bS | yS)
∑

e

QS(e) QS(aS | aSe)

=
∏
i∈S

PR(aibi | xiyi) U(bS | yS) 2−s

=
∏
i∈S

PR(aibi | xiyi) U(bS | yS) U(aS | xS)

=
∏
i∈S

PR(aibi | xiyi) U(aSbS | xSyS) . (3.245)

�

Theorem 3.7.2. For any (ε,S)-divisible distribution Qε(a≤ne), there exists an ABNS-
attack P(a≤nb≤ne | x≤ny≤n) on PR⊗n

ε (a≤nb≤n | x≤ny≤n) such that

∑
b≤n

P(a≤nb≤ne | x≤ny≤n) = Qε(a≤ne) ∀x≤n, y≤n . (3.246)

Proof. Theorem 3.7.2 follows from Definition 19, Theorem 3.7.1 and the fact that

PR⊗n
ε (a≤nb≤n | x≤ny≤n) =

∑
S∈P([n])

ω(S, n, ε) PS(a≤nb≤n | x≤ny≤n) . (3.247)

�

3.7.2 Attacking linear functions

In this section we show that, in the limit of large n, an ABNS adversary can gain
complete knowledge if f (a≤n) is the parity of the string a≤n, no matter how small the
noise parameter ε (and consequently the secrecy of the individual bits ai) is.

Theorem 3.7.3. Linear functions reduce secrecy. For any T ∈ P([n]) there exists
an (ε − S)-divisible distribution Qε(a≤ne) such that

Qε

(⊕
i∈T

ai = e
)

= 1 − (1 − 2ε)t , (3.248)

where t = |T |.
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Proof. In the proof we use that in QS(a≤ne) a bit ai may be influenced as a function
of all other bits ai (when conditioned on e). Thus the adversary simply chooses one
bit ai and influences it towards or against the parity of the other bits ai. Formally
the construction of {QS} is as follows: If S ∩ T = ∅ then let QS(a≤ne) be the trivial
distribution

QS(a≤ne) = 2−(n+1) . (3.249)

For all S such that S ∩ T , ∅ choose an i∗ ∈ S ∩ T . Then let QS(a≤ne) be defined
as

QS(aie) = 2−n and (3.250)

QS(ai | aie) = δ(ai, e ⊕
⊕
j∈T /i

a j) for i = i∗ . (3.251)

Note that (3.250) is equivalent to setting QS(e) = 1/2 and QS(ai | e) = 2−(n−1). There-
fore,

QS(aiai | e) = 2−(n−1) δ(ai, e ⊕
⊕
j∈T /i

a j) , (3.252)

which yields (3.230) where averaged with QS(e) = 1/2. Furthermore, QS(a≤ne)
satisfies (3.231) since S ∈ i. We complete the proof by showing (3.248). From
(3.249)-(3.251) it follows that

QS(
⊕
i∈T

ai = e) =

{ 1
2 S ∩ T = ∅

1 otherwise .
(3.253)

Furthermore, notice that by the definition of ω(S, n, ε) we have∑
S∈P([n]):i∈S

ω(S, n, ε) = (1 − 2ε) , (3.254)

and, for, T = {i1, i2, ..., it}

Qε(
⊕
i∈T

ai = e) =
∑
S∈P([n])

ω(S, n, ε) QS(
⊕
i∈T

ai = e)

=
∑

S:
⋂t

j i j∈S

ω(S, n, ε) ·
1
2

+
∑

S:∃ j:i j∈S

ω(S, n, ε) · 1

= (1 − 2ε)t ·
1
2

+ (1 − (1 − 2ε)t) · 1

= 1 −
1
2

(1 − 2ε)t (3.255)

�
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3.7.3 Impossibility of ABNS privacy amplification from
(ε,S)-divisible distributions Qε(a≤ne)

Theorem 3.7.4. For any function f (a≤n) there exists an (ε,S)-divisible distribution
Qε(a≤ne) such that

Qε( f (a≤n) = e) ≥
1
2

+
ε

2
. (3.256)

The proof of Theorem 3.7.4 follows below Theorem 3.7.9.

Theorem 3.7.5. For any function f (a≤n) and any S ∈ P([n]) there exists a QS(a≤ne)
such that

QS( f (a≤n) = e) =
1
2

+ 1 − 2−n
∑
a
S

max
(
|A0(a

S
)|, |A1(a

S
)|
)

(3.257)

Proof. Fix a function f (a≤n) and let us define the setsAe(aS) as

Ae(aS) := {aS : f (aS, aS) = e} , (3.258)

and the number d(a
S
) as

d(a
S
) := min

(
|A0(a

S
)|, |A1(a

S
)|
)
. (3.259)

We choose d(a
S
) strings aS ∈ Ae(aS) arbitrarily (this can be the whole set Ae(aS))

to form the setA′e(aS). We construct the QS(aSa
S
e) in the following way.

QS(e) =
1
2

and, (3.260)

QS(a
S
| e) = 2−|S| (3.261)

QS(aS | aSe) =


2−|S |+1 if aS ∈ A′e(aS)

2−|S | if aS ∈ Ae(aS)/A′e(aS)

2−|S | if aS ∈ Ae(aS)/A′e(aS)

0 if aS ∈ A′e(aS) .

(3.262)

Note that equations (3.260)-(3.262) are directly implying the defining conditions of
an S-influenceable distribution (3.230) and (3.231). We analyse the efficiency of
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this attack:

QS( f (a≤n = e)) =
∑

e

QS(e) QS( f (a≤n = e) | e)

=
∑

e

QS(e)
∑

a≤n: f (a≤n=e

QS(a≤n | e)

(3.260),(3.261)
⇒ =

1
2

∑
e

∑
a
S

2−|S|
∑

a
S

:a
S
∈Ae

QS(aSa
S
| e)

(3.262)
⇒ =

1
2

∑
e

∑
a
S

2−|S|
∑

a
S

:a
S
∈Ae

2−|S|
(
|Ae(aS)| + |A′e(aS)|

)
=

1
2

∑
e

∑
a
S

2−|S|
∑

a
S

:a
S
∈Ae

2−|S|
(
|Ae(aS)| + d(a

S
)
)

(3.259)
⇒ = 2−n−1

∑
e

|Ae| + 2−|S|
∑
a
S

2−|S|min
[
|A0(a

S
)|, |A1(a

S
)|
]

=
1
2

+ 1 − 2−|S|
∑
a
S

2−|S|max
[
|A0(a

S
)|, |A1(a

S
)|
]

=
1
2

+ 1 − 2−n
∑
a
S

max
[
|A0(a

S
)|, |A1(a

S
)|
]
, (3.263)

where we use the facts that
∑

a
S
Ae(aS) = Ae and that

∑
e |Ae| = 2n. �

Intuitively, the sum on the second to last line is the winning probability of some-
one guessing f (a≤n) after he has received the (uniformly distributed string) a

S
. We

will formalise this intuition now.

Definition 20 (Maximum-likelihood function). The maximum-likelihood function
g(b) of f (a) is defined as

g(b) = max[c : P( f (a) = c | b)] . (3.264)

Definition 21 (Correlation). The correlation CorP( f , g) between two binary random
variables f (a) and g(b) with respect to the joint distribution P(a, b) is defined as

CorP( f , g) := P( f (a) = g(b)) − P( f (a) , g(b))

= 2P( f (a) = g(b)) − 1 . (3.265)

Consider two n-bit strings A≤nB≤n where |S| bits are perfectly correlated and the
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other |S| are completely uncorrelated

PS(aSbS) = 2−2|S| (3.266)

PS(a
S
| aSbS) = 2−|S| (3.267)

PS(b
S
| a≤nbS) = δ(bS, aS) . (3.268)

Note that PS(a≤nb≤n) 2 is symmetric with respect to the exchange of a≤n and b≤n.
Note alsothat with this definition the sum in the last line of (3.263) is exactly the
probability that the maximum-likelihood function g(a≤n) guesses f (a≤n) correctly,
i.e.,

PS
(
f (a≤n) = g(b≤n)

)
=

∑
b≤n

PS(b≤n) max
[
c : P( f (a≤n) = c | b≤n)

]
= 2−n

∑
a
S

max
[
|A0(a

S
)|, |A1(a

S
)|
]
. (3.269)

This implies that the higher the correlation between the function f (a≤n) and its best
guess g(b≤n) with respect to the distribution PS(a≤nb≤n) is, the lower is the probabil-
ity QS( f (a≤n) = e).

Lemma 3.7.6. Define the distribution PS(a≤nb≤n) as in (3.266)-(3.268) and the dis-
tribution QS(a≤ne) according to (3.260)-(3.262) or a function f (a≤n). Then

QS( f (a≤n) = e) = 1 −
1
2

CorPS( f , g) , (3.270)

where we denote gS(b≤n) as the maximum-likelihood function of f (a≤n) with respect
to PS(a≤nb≤n). Note that gS(b≤n) only depends on b

S
.

Proof. Lemma 3.7.6 follows directly from (3.263), (3.269), and (3.270). �

The distribution PS(a≤nb≤n) defined in (3.266)-(3.268) can be interpreted as a
partial erasure channel; the bits b

S
are perfectly transmitted from Alice to Bob, but

the bits bS are completely erased (or vice versa). This insight allows us to compute
Qε(a≤ne) via a definition of a probabilistic erasure channel, since

Qε(a≤ne) =
∑
S

(1 − 2ε)n−|S| (2ε)SQS(a≤ne) . (3.271)

2We denote the distribution defined in (3.266)-(3.268) with a subscript S as it is exactly the same
distribution as the conditional distribution in (3.234) for the inputs x≤n = y≤n = 0n.
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Definition 22 (Probability p-erasure channel). We call the probability distribution
γp(ab) : {0, 1} × {0, 1,⊥} → [0, 1] a probability p-erasure channel with uniform
input a if γp(a) = 1/2 and

γp(b | a) =

p if b =⊥ ,

δ(b, a) · (1 − p) otherwise .
(3.272)

Theorem 3.7.7. Let P2ε(a≤nb≤n) = γn
2ε(a≤nb≤n). Let g(b≤n) : {0, 1,⊥} be the maximum-

likelihood guess g(b≤n) for the function f (a≤n) with respect to the P2ε(a≤nb≤n). Con-
struct the set of S-influenceable distributions {QS(a≤ne)} as in Theorem 3.7.5. Then
for the derived distribution Qε−sv( f (a≤n) = e) it holds that

Qε( f (a≤n) = e) = 1 −
1
2

CorP2ε( f , g) . (3.273)

Proof. Note that if bi =⊥, which happens with probability 2ε, then P2ε(ai | bi) = 1
2 .

On the other hand, with probability (1−2ε) we have bi ,⊥ and P2ε(ai | bi) = δ(ai, bi).
Therefore,

P2ε(bS = a
S
∩ bS =⊥S) = (1 − 2ε)|S| (2ε)|S| , (3.274)

and the conditional probability probability of the string a≤n is the same as for the
distribution PS, i.e.,

P2ε(aSaS | b≤n = b
S
⊥S) = PS(a

S
aS | b≤n = b

S
bS). (3.275)

Thus, also the maximum-likelihood function g(b≤n) of f (a≤n) with respect to P2ε is
equivalent to gS(b

S
) when conditioned on b≤n = b

S
⊥S:

g(b
S
,⊥S) = gS(b

S
) , (3.276)

and we can compute the probability P2ε( f (a≤n) = g(b≤n) as

P2ε( f (a≤n) = g(b≤n)) = (1 − 2ε)|S| (2ε)|S| PS( f (a≤n) = gS(b≤n)) . (3.277)

Using CorP( f , g) = 2P( f = g) − 1 we can complete the proof with

Qε( f (a≤n) = e) =
∑
S

(1 − 2ε)n−|S| (2ε)|S|QS( f (a≤n) = e)

=
∑
S

(1 − 2ε)n−|S| (2ε)|S|QS( f (a≤n) = e)

Lemma 3.7.6
⇒ = 1 −

1
2

∑
S

(1 − 2ε)n−|S| (2ε)|S| CorPS( f , gS)

= 1 −
1
2

CorP2ε( f , g) . (3.278)

�
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In Theorem 3.7.7 we establish a connection between the success probability of
an attack from Eve on f (a≤n) and the correlation of f (a≤n) to its maximum-likelihood
guess g(b≤n) where b≤n is obtained obtained from a≤n via a probabilistic binary era-
sure channel. We argue in the remainder of Section 3.7.3 that this correlation cannot
be too strong, unless both functions f (a≤n) and g(b≤n) are strongly biased. However,
if f (a≤n) is strongly biased, then Eve can guess the output of f (a≤n) anyway (by a
trivial attack) with high probability.

Definition 23 (Bias). Define the bias βP( f ) of the function f (a≤n) with respect to
the distribution P(a≤n) as

βP( f ) := P( f (a≤n) = 0) −
1
2
. (3.279)

Lemma 3.7.8. The correlation CorP( f , g) is limited by the difference of the biases
of f and g as

CorP( f , g) ≤ 1 − 2|βP( f ) − βP(g)| . (3.280)

Proof.

CorP( f , g)

= 2P( f (a≤n) = g(b≤n)) − 1

= 2
(
P( f (a≤n) = 0 ∩ g(b≤n) = 0) + P( f (a≤n) = 1 ∩ g(b≤n) = 1)

)
− 1

≤ 2
(
min

[
P( f (a≤n) = 0),P(g(b≤n) = 0)

]
+ min

[
P( f (a≤n) = 1),P(g(b≤n) = 1)

])
− 1

= 2
(
min

[1
2

+ βP( f ),
1
2

+ βP(g)
]
+ min

[1
2
− βP( f ),

1
2
− βP(g)

])
− 1

≤ 2
(
1 − |βP( f ) − βP(g)|

)
− 1

= 1 − 2|βP( f ) − βP(g)| . (3.281)

�

Theorem 3.7.9. [Yan07, O’D04] Let the strings a≤n ∈ {0, 1}n and b≤n ∈ {0, 1,⊥}n be
drawn according to the joint distribution P2ε(a≤nb≤n) = γn

2ε(a≤nb≤n), i.e., be related
via n independent 2ε-erasure channels. Then for any two functions f (a≤n), g(b≤n)
their correlation is limited by

CorP2ε( f (a≤n), g(b≤n)) ≤
√

1 − 2ε
(
1 − 4 βP2ε( f ) βP2ε(g)

)
. (3.282)
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We come back to the proof of Theorem 3.7.4. Assume without loss of generality
that the function is biased towards 0, i.e.,

P2ε( f (a≤n) = 0) ≥ 0 . (3.283)

First, assume that f (a≤n) is strongly biased with respect to P2ε, i.e.,

βP2ε( f ) ≥
ε

2
. (3.284)

As the marginal distribution P2ε(a≤n) is uniform, we can define the S-influenceable
distributions {QS(a≤ne)} trivially by QS(e = 0) = 1 and QS(a≤n | e = 0) = 2−n.
Obviously, this induces an ε-divisible Qε(a≤ne) with

Qε( f (a≤n) = e) = Qε( f (a≤n) = 0) ≥
1 + ε

2
, (3.285)

and Theorem 3.7.4 follows. From now on we assume that βP2ε( f ) < ε
2 . Let the bias

βP2ε(g) ≥ ε, then for any function g(b≤n), we have by Lemma 3.7.8 that

CorP2ε( f , g) ≤ 1 − 2|βP2ε( f ) − βP2ε(g)|

< 1 − ε . (3.286)

If we assume that the maximum-likelihood function g(b≤n) of f (a≤n) with respect
to P2ε would have such a large bias (which is unlikely) then by Theorem 3.7.7 we
obtain Theorem 3.7.4

Qε−sv( f (a≤n) = e) = 1 −
1
2

CorP2ε( f , g)

>
1
2

+
ε

2
. (3.287)

Thus, we may from now on assume that for the maximum-likelihood function g(b≤n)
of f (a≤n) with respect to P2ε the bias is also small, i.e., βP2ε(g) < ε. Then we can
conclude by Theorem 3.7.9 that

CorP2ε( f (a≤n), g(b≤n)) ≤
√

1 − 2ε
(
1 − 4βP2ε( f )βP2ε(g)

)
<

√
1 − 2ε

(
1 − 4

ε

2
ε
)

=
√

1 − 2ε + 4ε3

≤
√

1 − 2ε + ε2

= 1 − ε , (3.288)

where we have used the fact that we are only interested in the parameters ε < 1/4.
Theorem 3.7.4 follows via (3.287).
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3.8 Application to more general systems

The no-signalling attacks we derived so far for TONS, dynamic TONS, and ABNS
privacy-amplification protocols using n PRε boxes can be applied also to more gen-
eral systems with arbitrary system B, i.e., to Vε(ab | xy), see (2.11). The proofs of
Theorems 3.4.2 and 3.7.1 only require that the marginal PR(a | x) be uniform.

Theorem 3.8.1. Any ordered S-influenceable distribution Qo−S(a≤ne) can be ex-
tended to a TONS-attack Vo−S(a≤nb≤ne | x≤ny≤n) on the systems A≤nB≤n with distribu-
tion

Vo−S(a≤nb≤n | x≤ny≤n) :=
∏
i∈S

U(aibi | xiyi)
∏
i∈S

V(aibi | xiyi) . (3.289)

Proof. By a minimal adaptation of construction (3.118)–(3.120) we obtain the gen-
eralisation of Theorem 3.4.2 from PRε(ab | xy) to Vε(ab | xy); we substitute the boxes
PR(aibi | xiyi) with V(aibi | xiyi) and U(bi | yi) with V(bi | yi) and obtain

Vo−S(e) = Qo−S(e) (3.290)

Vo−S(a≤nb≤n | x≤ny≤ne) =

n∏
i=1

Vo−S(aibi | a<ib<ix≤ny≤ne) (3.291)

Vo−S(aibi | a<ib<ix≤ny≤ne) =

{
V(bi | yi) Qo−S(ai | a<ie) i ∈ S
V(aibi | xiyi) otherwise .

(3.292)

The rest of the proof follows exactly the same steps as the proof of Theorem 3.4.2.
�

By Theorem 3.8.1 we obtain also a generalisation of Theorem 3.4.3.

Theorem 3.8.2. For any ordered (ε,S)-divisible distribution Qo−ε(a≤ne), there exists
a TONS-attack P(a≤nb≤ne | x≤ny≤n) on V⊗n

ε (a≤nb≤n | x≤ny≤n) such that∑
b≤n

P(a≤nb≤ne | x≤ny≤n) = Qo−ε(a≤ne) ∀x≤n, y≤n . (3.293)

Thus, all bounds we derived in Section 3.5 for classical privacy amplification
against Qo−e(a≤ne) also hold for TONS privacy-amplification protocols on Vε(ab | xy)
boxes. Similarly, by substituting PR(aibi | xiyi) with V(aibi | xiyi) and U(bi | yi) with
V(bi | yi) in the proof of Theorem 3.6.1 in Section 3.6 we can generalise Theorem
3.8.2 to dynamic TONS attacks. Again by the same substitution into the proof of
Theorem 3.7.1 we can conclude analogously on a generalisation of Theorem 3.7.2
to Vε boxes and obtain the following statement.
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Theorem 3.8.3. For any (ε,S)-divisible distribution Qε(a≤ne), there exists an ABNS-
attack P(a≤nb≤ne | x≤ny≤n) on V⊗n

ε (a≤nb≤n | x≤ny≤n) such that∑
b≤n

P(a≤nb≤ne | x≤ny≤n) = Qε(a≤ne) ∀x≤n, y≤n . (3.294)

This implies by Theorem 3.7.4 that ABNS privacy amplification on Vε(ab | xy) is
impossible.



Chapter 4

Distillation of Nonlocality

4.1 Definition of a nonlocality distillation protocol

We consider bipartite nonlocality distillation protocols. Two players Alice and Bob
share n resource boxes denoted R. Conditional probability distributions that are
produced via interaction of Alice and Bob with the resource systems are marked
with an accent P̂. Also the final output of a nonlocality distillation protocols, i.e., the
distillate is marked with an accent P̂(ab | xy). The inputs and outputs of the resource
boxes R are indexed with a subscript, i.e., ai, bi, xi, yi, in contrast to the inputs and
outputs of the protocol a, b, x, y. Without communication, the players goal is to use
these boxes to simulate a single box P̂(ab | xy) such that CHSH(P̂) > CHSH(R). To
encompass the most general case, we allow the players to use their boxes in any
given (dynamic) order (see Figure 4.1), which may also depends on x and y.

Definition 24 (Bipartite distillation protocol). A bipartite nonlocality distillation
protocol using n resource boxes R is defined by the tuple of functions

({ jx
i }, {k

y
i }, {x

x
ji}, {y

y
ki
}, { f x}, {gy}) for i ∈ [n] , (4.1)

in the following way: Given (x, y), the outputs (a, b) of the box P̂(ab | xy) are func-
tions of the outputs a≤n, b≤n of the n resource boxes, i.e., a = f x(a≤n), b = gy(b≤n).
At the i-th step of the protocol, the function jx

i = jx
i (a j<i) of the previously obtained

outputs a j<i determine which is the next box Alice uses and function xx
ji
(a j<i) what

to input in this box (similarly for Bob ky
i and yy

ki
).1

1 Note that in the present discussion, Alice and Bob do not use shared randomness in addition to
their non-local resources. However, the linearity of the CHSH value in the output probabilities of
the distillation protocol allows to extend the results in Section 4.3 straightforwardly to distillation
protocols with shared randomness.

95
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...

...

x1

xi

xn
an

ai

a1 b1

bi

bn

y1

yi

yn

x yP̂
R

R

R
a = fx(an) b = gy(bn)

Figure 4.1. Schematic representation of a general distillation protocol. The arrows
indicate the orders in which Alice and Bob use their resource boxes. The i-th sys-
tem of Bob has two outgoing arrows pointing to distinct following systems, which
indicates a dynamic order that depends non-trivially on bi.

The functions { jx
i }, {k

y
i }, {x

x
ji
}, and {yy

ki
}, in the literature also referred to as the wiring,

specify the interaction of the players with the resources. They determine the order of
usage of and the inputs to the resources at any given step in the protocol and induce
a first mapping, the output functions f x(a≤n), gy(b≤n) induce a second mapping:

R⊗n(a≤nb≤n | x≤ny≤n)

↓ { jx
i }, {k

y
i }, {x

x
ji}, {y

y
ki
}

P̂(a≤nb≤n | xy) = R⊗n(a≤nb≤n | xx
≤n(a≤n)yy

≤n(b≤n))

↓ { f x, gy}

P̂(ab | xy) =
∑

a≤n: f x(a≤n)=a
b≤n:gy(b≤n)=b

P̂(a≤nb≤n | xy) , (4.2)

where we write xx
≤n(a≤n) for the vector of functions xx

ji
(a j<i). A commonly ad-

dressed class of distillation protocols are so-called non-adaptive distillation proto-
cols, one example being the first distillation protocol presented by Forster, Winkler,
and Wolf [FWW09].

Definition 25 (Non-adaptive distillation). A distillation protocol is non-adaptive if
the inputs to the resource are chosen independently from any outputs (a≤n, b≤n) of
the resources, i.e., if xi = xi(x) and yi = yi(y).



97 4.2 Examples of distillation protocols

Note that for non-adaptive protocols there is also no need to specify order functions
{ jx

i }, {k
y
i }; all inputs can, in principle, be inserted simultaneously.

4.2 Examples of distillation protocols

4.2.1 The Forster-Winkler-Wolf non-adaptive protocol

The possibility that it is, in principle, possible to distill nonlocality was discovered
by Forster, Winkler, and Wolf in 2009 [FWW09]. They presented the first proto-
col allowed to distill nonlocality from some no-signalling boxes. In their protocol,
the parties essentially transfer their inputs (x, y) to the n resource boxes and each
party outputs the parity of the outcomes it obtains. Explicitly, the input and output
functions are

xi = xi(x) = x , ax =

n⊕
i=1

ai , (4.3)

yi = yi(y) = y , by =

n⊕
i=1

bi . (4.4)

As the protocol is non-adaptive, the inputs xi and yi do not depend on previous
outputs, we do not need to specify the orders { ji} and {ki} in which the players intact
with the resources. We show that the protocol distills nonlocality from correlated
boxes Cδ(ab | xy), see (2.10), for any 0 < δ < 1/2. A correlated box is defined as
a convex combination of a (noiseless) PR and a pair of perfect shared random bits
SR, hence,

CHSH(Cδ) = δCHSH(PR) + (1 − δ) CHSH(SR)

= 1 · δ +
3
4

(1 − δ) =
3 + δ

4
. (4.5)

For values of δ < 1/2 the protocol distills nonlocality of correlated boxes, i.e., for
the above distillation protocol we have CHSH(P̂) > CHSH(Cδ), with an asymptotic
value of CHSH(P̂) = 7/8 for large n. The rough intuition is the following (for
a detailed analysis we refer to [FWW09]): For each input (x, y) the parity of the
output is the average parity of the sum of outputs of n copies of a Cδ box. For
(x, y) , (1, 1) the parity of the outputs of a single copy is with certainty 0, i.e.,
Cδ(ai ⊕ bi = 0 | xy) = 1. Therefore, also the sum of all these parities

∑n
i=1 ai ⊕ bi is

with certainty 0. For (x, y) = (1, 1), we have Cδ(ai ⊕ bi = 0 | xy) = 1 − δ for each
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P̂

an

a1 b1

bn

x y

...

...

R

R

x y

R

a =

nM

i=1

ai b =

nM

i=1

bi

ai bi
R

x · a1 y · b1

x · (a1 � ... � ai�1)

x · (a1 � ... � an�1) y · (b1 � ... � bn�1)

y · (b1 � ... � bi�1)

a2 b2

Figure 4.2. The Brunner-Skrzypczyk distillation protocol. If the resources are cor-
related boxes R(aibi | xiyi) = Cδ(aibi | xiyi), then for n → ∞ the distillate becomes a
perfect PR, i.e., P̂(ab | xy) = PR(ab | xy).

copy independently. Then, for every δ > 0, the probability to have the correct output
parity, i.e.,

∑n
i=1 ai ⊕ bi = 1, approaches 1/2 for large n. Therefore, we have for the

distillate P̂(ab | xy):

CHSH(P̂) =
1
4

∑
x,y

P(a ⊕ b = x · y | xy)

=
1
4

(1 + 1 + 1 + 0.5) = 0.875 . (4.6)

4.2.2 The Brunner-Skrzypczyk adaptive protocol

The second protocol we present is due to Brunner and Skrzypczyk [BS09], in a
form generalised to the use of n resource boxes (see Figure 4.2). The protocol was
the first adaptive protocol: Inputs to resource boxes depend on previously obtained
outputs. Alice and Bob use their resources in standard order, i.e., the order functions
are trivially ji = i = ki. The input and output functions for Alice and Bob are given
as
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x1 = x , xi = x ·
( i−1⊕

j=1

a j

)
, a =

n⊕
i

ai , (4.7)

y1 = y , yi = y ·
( i−1⊕

j=1

b j

)
, b =

n⊕
i

bi . (4.8)

This protocol was highly celebrated as it can distill the nonlocality of Cδ boxes
even up to an asymptotic value of CHSH(P̂) → 1 (in the limit of large n), i.e., the
simulated box P̂ becomes equivalent to the PR, for any δ > 0. We again provide the
intuition behind this result: First, consider the case where (x, y) , (1, 1). Then we
have (xi, yi) , (1, 1) for 1 ≤ i ≤ n and analogously to the previous example we have
again P̂(a ⊕ b = 0 | xy) = 1.

Now to the case where (x, y) = (1, 1). In this case the protocol performs a
sort of error correction: as soon as the parity of the outputs of any first j boxes
is odd, i.e.,

⊕ j
i=1 ai ⊕ bi = 1, then the inputs cannot be both 1 for the rest of the

protocol, i.e., (xi, yi) , (1, 1) for any i > j. Hence, once the sum of the outputs
has the correct parity, it also remains correct for the rest of the protocol. Until this
happens, i.e., as long as

⊕ j
i=1 ai ⊕ bi = 0, there is a 50% chance that the next input

is (x j+1, y j+1) = (1, 1). Since Cδ(a j+1 ⊕ b j+1 = 1 | x j+1 = 1, y j+1 = 1) = δ > 0, sooner
or later the parity of the outputs becomes odd, and then stays odd for the rest of the
protocol. This implies that also that P̂(a ⊕ b = 1 | x = 1, y = 1) → 1 in the limit of
large n and, therefore, nonlocality reaches its algebraic maximum CHSH(P̂)→ 1.

For further examples of adaptive distillation protocols we refer the reader, e.g.,
to [Ras12] and [ABL+09].

4.3 Distillation as a cryptographic game

Both protocols presented in Section 4.2 crucially exploit the fact that there is no
noise in the output (ai, bi) if (xi, yi) , (1, 1). For PRε, which can be decomposed
into two parts, a part with maximal nonlocality and the other just (white) noise,

PRε(ab | xy) = (1 − 2ε) PR(ab | xy) + 2εU(ab | xy) , (4.9)

nonlocality distillation seems to be impossible.2

We introduce a novel method to derive bounds on nonlocality distillation pro-
tocols. We construct an adversary P(a≤nb≤ne | x≤ny≤n) who attacks the resource dis-
tribution R⊗n(a≤nb≤n | x≤ny≤n) to gain knowledge on Alice’s output of the distilla-

2As proven by Beigi and Gohari for super-quantum PRε boxes [BG14].
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tion protocol f x=0(a≤n) (see also Figure 4.3). If the interaction between the play-
ers and P(a≤nb≤n | ex≤ny≤n) is well-defined, then (4.2) maps P(a≤nb≤ne | x≤ny≤n) to a
box P̂(abe | xy) with P̂(e | xy) = P(e) and

∑
e P̂(abe | xy) = P̂(ab | xy) for the output

P̂(ab | xy) of the distillation protocol. If P̂(ab | exy) is also no-signalling, then we are
able to apply Corollary 3.1.2 in order to derive limitations on CHSH(P̂) from the
knowledge of the adversary

P̂(a = e | x) ≥ 1/2 + 2ε ⇒ CHSH(P) ≤ 1 − ε . (4.10)

We derive sufficient conditions on the attack P(a≤nb≤ne | x≤ny≤n) such that P̂(ab | exy)
is no-signalling. The intuition behind these conditions is that as long as the resource
distribution conditioned on Eve P(a≤nb≤n | ex≤ny≤n) respects the orders of use of the
distillation protocol the interaction of the players with the box P(a≤nb≤n | ex≤ny≤n)
is well-defined and induces a no-signalling distribution P̂(ab | exy) on the output of
the protocol via the mappings (4.2). In general protocols, e.g., Alice can choose
the inputs x j>i as a function of a j≤i , which is why we require the outputs a j≤i to
be independent of the inputs x j>i by enforcing the dynamic TONS conditions on
P(a≤nb≤n | ex≤ny≤n). For non-adaptive protocols the inputs x≤n are independent of the
outputs a≤n and therefore it is sufficient to enforce the ABNS conditions.

4.3.1 ABNS-attacks induce no-signalling attacks on
non-adaptive protocols

As a warm-up for the case of general distillation protocols, we show how to derive
bounds on non-adaptive protocols from ABNS-attacks.

Theorem 4.3.1. Let P̂ denote a box generated by a non-adaptive distillation proto-
col using n R boxes as resource. Let P(a≤nb≤ne | x≤ny≤n) be an ABNS attack on the re-
source boxes R⊗n(a≤nb≤n | x≤ny≤n). Then P(a≤nb≤ne | x≤ny≤n) induces a no-signalling
attack P̂(abe | xy) on the distillate P̂(ab | xy).

Proof. In order to prove the theorem, we need to show that the interaction between
Alice and Bob with the resources conditioned on Eve P(a≤nb≤n | ex≤ny≤n) is well-
defined, and then that P̂(ab | exy) is no-signalling between Alice and Bob. The
distribution P(a≤nb≤n | xy) can be calculated from the resource P(a≤nb≤n | ex≤ny≤n)
directly:

P(a≤nb≤n | xy) = P(a≤nb≤n | ex≤n(x)y≤n(y)) . (4.11)
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P̂(abe|xy)

b

x y

efx(a1...an) = a

...

...

b1

bi

bn

y1

yi

yn

PR"

PR"

PR"
x1

xi

xn
an

ai

a1

Figure 4.3. Eve’s view on distillation: A no-signalling attack on the resources of
an adaptive distillation protocol. Similar to the situation in a no-signalling privacy
amplification protocol the adversary attacks an output bit that is a function of the
outputs of PR⊗n

ε , f x(a1, ..., an). Via the mappings (4.2), the attack P(a≤nb≤ne | x≤ny≤n)
on the resources is mapped on P̂(abe | xy). To apply Corollary 3.1.2 in order to
derive bounds on CHSH(P̂), the box P̂(abe | xy) must be no-signalling. For this it is
sufficient that P(a≤nb≤ne | x≤ny≤n) is a dynamic TONS attack on the resources PR⊗n

ε .
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For no-signalling from Bob to Alice we have∑
a

P(ab | exy) =
∑

a≤n: f x(a≤n=a)
b≤n

P(a≤nb≤n | exy)

=
∑

a≤n: f x(a≤n)=a
b≤n

P(a≤nb≤n | ex≤n(x)y≤n(y))

=
∑

a≤n: f x(a≤n)=a
b≤n

P(a≤nb≤n | ex≤n(x)y≤n(y′))

=
∑

a≤n: f x(a≤n)=a
b≤n

P(a≤nb≤n | exy′)

=
∑

a

P(ab | xy′e) , (4.12)

where we use Definition 4 for the second equality. No-signalling from Alice to Bob
is proven analogously. �

Using Theorem 4.3.1 we can directly apply the ABNS attack from Theorem
3.2.1 by Hänggi et al. [HRW13] (or, equivalently, Theorem 3.7.2 and Theorem 3.7.4
to obtain a slightly weaker bound), to obtain Theorem 4.3.2.

Theorem 4.3.2. Let P̂(ab | xy) be generated by a non-adaptive distillation protocol
using n PRε boxes as resource. Then its degree of nonlocality is bounded by

CHSH(P̂) ≤ 1 −
ε

4
. (4.13)

Proof. Theorem 3.2.1 states that for any function f (a≤n), there exists an ABNS at-
tack P(a≤nb≤ne | x≤ny≤n) such that

P( f (a≤n) = e | x≤n) ≥
ε

2
∀x≤n . (4.14)

Thus, an ABNS attack P(a≤nb≤ne | x≤ny≤n) that satisfies (4.14) for the output function
f 0(a≤n) of the distillation protocol induces via Theorem 4.3.1 an attack P̂(abe | xy)
with

P̂(a = e | x = 0) ≥
ε

2
. (4.15)

By Corollary 3.1.2, this implies

CHSH(P̂) ≤ 1 −
ε

4
, (4.16)

which completes the proof. �
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By an argument of combining subprotocols we can even derive a stronger bound
than (4.13) for many values of ε.

Corollary 4.3.3. For any δ > 0 and any ε < 1/4, there exists a subsetS ⊆ [ε/4, ε] of
non-zero measure, such that for any non-adaptive protocol using PRε∗ , with ε∗ ∈ S,
as resources the nonlocality of the distillate P̂ is bounded by

CHSH(P̂) ≤ 1 − ε∗ + δ . (4.17)

Proof. First note that via use of a depolarisation protocol [MAG06] and three bits
of classical shared randomness, any box P(ab | xy) with CHSH(P) = 1 − ε can
be converted into a PRε box without communication. For a given ε < 1/4, define
1−ε′ as the supremum of CHSH(P̂) over all non-adaptive distillation protocols using
(arbitrarily many) PRε as a resource. Without loss of generality, we can assume that
ε′ < ε. Then it must be possible to generate any box PRε′′ with ε′ < ε′′ < ε with
PRε boxes as resource. Hence, for any ε′′, 1 − ε′ is also the supremum of CHSH(P̂)
over all non-adaptive distillation protocols using PRε′′ as a resource. Thus, for a
given δ > 0 we choose the set S = (ε′, ε′ + δ), which completes the proof. �

4.3.2 Sufficient conditions for a no-signalling attack on
general distillation protocols

Theorem 4.3.4. Let P̂(ab | xy) denote a box simulated by a general distillation pro-
tocol using n R boxes as resource in dynamic orders { jx

i },{k
y
i }. Let P(a≤nb≤ne | x≤ny≤n)

be a dynamic TONS attack on R⊗n(a≤nb≤n | x≤ny≤n) that fulfils each of the four dy-
namic TONS conditions specified by the orders ({ jx

i }, {k
y
i }) for x ∈ 0, 1 and y ∈ 0, 1.

Then P(a≤nb≤ne | x≤ny≤n) induces a no-signalling attack P̂(abe | xy) to P̂(ab | xy).

Proof. The intuition behind Theorem 4.3.4 is that the interaction between Alice and
Bob and the dynamic TONS system P(a≤nb≤n | ex≤ny≤n) is (locally) well-defined for
each dynamic order { jx

i }, {k
y
i } and that, in addition, the distributions that arise on

either Alice’ or Bob’s side are independent of the other players interaction with
P(a≤nb≤n | ex≤ny≤n).

We first show that the interaction of the players with the box P(a≤nb≤n | ex≤ny≤n)
is well-defined and then we prove no-signalling from Bob to Alice, B

ns
→ A. No-

signalling from Alice to Bob is proven analogously. If the box P(a≤nb≤n | ex≤ny≤n)
satisfies the dynamic TONS conditions (2.4) for the order { jx

i }, {k
y
i } it can be written
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as

P(a≤nb≤n | ex≤ny≤n) = P(a≤n | ex≤n) P(b≤n | a≤nex≤ny≤n)

=

n∏
i=1

P(a jx
i
| a jx

<i
exx

jx
≤i

)
n∏

i=1

P(bky
i
| a≤nbky

<i
ex≤nyy

ky
≤i

) . (4.18)

At each step the interaction of Alice and Bob and the system P(a≤nb≤n | ex≤ny≤n) in
a distillation protocol with dynamic orders ({ jx

i }, {k
y
i }) is well-defined. The complete

distribution P̂(a≤nb≤n | exy) induced by this interaction, see (4.2), is computed as

P̂(a≤nb≤n | exy) = P̂(a≤n | ex) P̂(b≤n | a≤nexy) (4.19)

P̂(a≤n | ex) =

n∏
i=1

P(a jx
i
| a jx

<i
exx

jx
≤i

) (4.20)

P̂(b≤n | a≤nexy) =

n∏
i=1

P(bky
i
| a≤nbky

<i
exx

jx
≤i

yy
k≤i

) , (4.21)

where jx
i = jx

i (a< ji), ky
i = ky

i (b<ki) and

xx
j≤i

(a j<i) :=
(
xx

j1 , x
x
j2(a j1 , x), ..., xx

ji(a j<i)
)

(4.22)

yy
k≤i

(bk<i) :=
(
yy

k1
, yy

k2
(bk1), ..., y

y
ki

(bk<i)
)
. (4.23)

Note that, using the dynamic TONS conditions (2.4) one can also show that any
marginal distribution arising during the protocol, i.e., P̂(a jx

≤iA
bky
≤iB
| exy), is well-

defined for any iA, iB ∈ [n]. It follows directly from (4.21) that

∑
b≤n

P̂(b≤n | a≤nexy) =

n∏
i=1

∑
bky

i

P
(
bky

i
| a≤nbky

<i
exx

jx
≤i

yy
k≤i

(bky
<i

)
)

= 1

=

n∏
i=1

∑
b

ky′
i

P
(
bky′

i
| a≤nbky′

<i
exx

jx
≤i

yy′

k≤i
(bky′

<i
)
)

=
∑
b≤n

P(b≤n | a≤nexy′) , (4.24)
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which implies B
ns
→ A through∑
b

P̂(ab | exy) =
∑

a≤n: f x(a≤n)=a
b≤n

P̂(a≤nb≤n | exy)

=
∑

a≤n: f x(a≤n)=a
b≤n

P̂(a≤n | ex)P̂(b≤n | a≤nexy)

=
∑

a≤n: f x(a≤n)=a
b≤n

P̂(a≤n | ex)P̂(b≤n | a≤nexy′)

=
∑

b

P̂(ab | exy′) , (4.25)

which completes the proof. �

4.3.3 Application of dynamic TONS attacks to adaptive
distillation protocols

When we constructed dynamic TONS attack in Section 3.6 from the distributions
Qo−ε(a≤ne), we did so for a fixed dynamic order { ji}, and only showed that dynamic
TONS conditions hold for this choice of dynamic order { ji} (but for all possible
dynamic orders of Bob {ki}). At any step in the protocol we could have for ex-
ample j0

i (a< ji) , j1
i (a< ji) and the two orders may deviate. If, in this case, an attack

P(a≤nb≤ne | x≤ny≤n) satisfies the dynamic TONS conditions only for a single dynamic
order, e.g., { j0

i }, {k
0
i }, then the proof of Theorem 4.3.4 does not apply anymore.

Thus, in order to apply Theorem 4.3.4, P(a≤nb≤ne | x≤ny≤n) must satisfy the dy-
namic TONS conditions for each set of dynamic orders {ix

j}, {k
y
i }

• {i0
j}, {k

0
i }

• {i0
j}, {k

1
i }

• {i1
j}, {k

0
i }

• {i1
j}, {k

1
i } .

In Section 3.6, we show how all TONS attacks constructed in Chapter 3 can be
generalised to dynamic TONS attacks for an arbitrary order {ki} for Bob, however, a
fix order { ji} for Alice — it can by any order { ji} but the choice which order is deter-
mined by construction (3.225) to (3.227). If we want to use (3.225) to (3.227) then
the problem is that the attack P(a≤nb≤ne | x≤ny≤n) must be constructed independently
of the inputs to the distillation protocol (x, y), and, hence, in particular of the two
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x yP̂

a = fx(an) b = gy(bn)

x1

xi

xn
an

ai
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(jx

i , xx
i ) (ky

i , yy
i )
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Figure 4.4. Mathematically equivalent view on a distillation protocol. On the left,
arrows denote the order in which Alice and Bob use their interfaces. On the right,
Alice and Bob repeatedly use the same interface. If equations (4.28) are satisfied,
then the distillate P̂(ab | xy) is identical on both sides.

orders { j0
i } and { j1

i }. We construct an attack independent of (x, y), but not attacking
the distillation protocol itself, but rather a mathematically equivalent version (see
also Figure 4.4).

When a distillation protocol is executed, Alice and Bob may proceed with the
next step using arbitrary input slots of their choice. In principle, one should regard
the information concerning which box is used in the next step as an additional input
of each party Alice and Bob to the system P(a≤nb≤ne | x≤ny≤n). Consider a distillation
protocol defined by the tuple of functions(

{ jx
i }, {k

y
i }, {x

x
ji}, {y

y
ki
}, { f x}, {gy}

)
. (4.26)

Let us define the i − th interaction of Alice with the system P(a≤nb≤n | ex≤ny≤n) as
inserting the input xx

ji
into the box jx

i and obtaining the output a jx
i
, and similarly for

Bob. Alternatively, we could consider another system

P′(a≤nb≤n | e j≤nk≤nx≤ny≤n) , (4.27)

which has a single interface on Alice’s and Bob’s side and the i − th interaction of
Alice is defined as her inserting input ( jx

i , x
x
i ) ≡ xx

jx
i

and obtaining a jx
i

as output (see
also Figure 4.4). If we define

P′(a jx
i
| a jx

<i
jx
≤ix

x
≤i) = P(a jx

i
| a jx

<i
xx

j≤i
) and (4.28)

P′(bky
i
| a≤nbky

<i
jx
≤nky
≤ix

x
≤nyy
≤i) = P(bky

i
| a≤nbky

<i
xx
≤nyy

k≤i
) , (4.29)
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then we have

P′(a≤nb≤n | xy) = P(a≤nb≤n | xy) . (4.30)

We present the attack P′(a≤nb≤n | e j≤nk≤nx≤ny≤n) on a sequential-input distillation
protocol with output function f 0(a1, ..., an), similar to the one in Section 3.6.
Let the function f̃ (a1, ..., an) be defined for the dynamic order { j0

i } by

f̃ (a1, a2, ..., an) = f (a′1, a
′
2, ..., a

′
n) (4.31)

with a′i := a ji . Now let P(a≤nb≤ne | x≤ny≤n) be a TONS attack on the function f̃
and on the boxes PR⊗n

ε constructed from an (ε,S)-divisible distribution Qo−ε(a≤ne)
according to the proof of Theorem 3.4.3. Then we define P′(a≤nb≤n | e j≤nk≤nx≤ny≤n)
as

P′(e) = P(e) (4.32)

P′(a≤nb≤n | ex≤ny≤n) =
∏

i

P′(a jib ji | a j<ie jixiyi) (4.33)

P′(a jib ji | a j<ie jixiyi) = P(a′ib
′
i | a

′
<iex′iy

′
i) . (4.34)

with a′i = a ji .

Theorem 4.3.5. Consider a distillation protocol given by the tuple

({ jx
i }, {k

y
i }, {x

x
ji}, {y

y
ki
}, { f x}, {gy}) ,

using PR⊗n
ε as resources. Then the box P′(a≤nb≤ne | j≤nk≤nx≤ny≤n) constructed in

(4.32)-(4.34) defines a dynamic TONS attack on PR⊗n
ε with respect to all four dy-

namic orders { jx
i } and ky

i }. Furthermore, Eve’s guessing probability of Alice’s output
given x = 0 is given by

P̂′(a = e | x = 0) = P( f̃ (a≤n) = e) . (4.35)

Theorem 4.3.5 follows directly from the proof of Theorem 3.6.2 and the above
considerations. Finally we can derive a bound on the nonlocality of the distillate for
general distillation protocol.

Theorem 4.3.6. Let P̂(ab | xy) be generated by a general distillation protocol using
n PRε as resource. Then its degree of nonlocality is bounded by

CHSH(P̂) ≤ 1 −
ε

2n
. (4.36)



108 4.3 Distillation as a cryptographic game

Proof. Due to Theorem 3.188, for any function f (a≤n) there exists an (ε,S)-divisible
distribution Qo−ε(a≤ne) with

Qo−ε( f (a≤n) = e) ≥ 1/2 + ε/n . (4.37)

Through Theorem 3.4.3 there must also exist a TONS attack P(a≤nb≤ne | x≤ny≤n) on
PR⊗n

ε with P( f (a≤n) = e) ≥ 1/2 + ε/n for any function f (a≤n). For the given distilla-
tion protocol with output function f 0(a≤n) we use a TONS attack P(a≤nb≤ne | x≤ny≤n)
on f̃ (a≤n) with P( f̃ (a≤n) = e) ≥ 1/2 + ε/n. Then we construct the attack on the dis-
tillation P′(a≤nb≤n | e j≤nk≤nx≤ny≤n) according to (4.32) to (4.34), which by Theorem
4.3.5 and Theorem 4.3.4 implies a no-signalling attack P̂′(abe | xy) on the distillate
P̂(ab | xy) with

P̂′(a = f 0(a≤n) = e | x = 0) ≥ 1/2 +
ε

n
. (4.38)

Finally, we apply Corollary 3.1.2 and obtain

CHSH(P̂) ≤ 1 −
ε

2n
, (4.39)

this completes the proof. �



Chapter 5

Summary and Outlook

5.1 Results on no-signalling attacks

In Chapter 3, we study the power of no-signalling attacks on privacy-amplification
protocols using PRε(ab | xy) boxes. We focus on time-ordered no-signalling (TONS)
attacks, which are relevant for the security of feasible secret-key distribution proto-
cols based only provably minimal assumptions. In Section 3.3, we present a sce-
nario of classical deterministic privacy amplification of ε-Santha-Vazirani-sources,
which is comparable to TONS privacy amplification. We show that the impossi-
bility result for classical deterministic privacy amplification of ε-Santha-Vazirani-
sources, achieved through Reingold distributions (3.40) and (3.41), cannot be easily
extended to TONS privacy amplification in Section 3.3.2 . In Section 3.4.1, we
present a construction of TONS attacks from another classical privacy-amplification
game, see Theorems 3.4.2 and 3.4.3. Numerical evidence, as well as the analy-
sis of these games for, e.g., parity functions, suggest the possibility that the Rein-
gold distributions can be extended to TONS attacks through this construction, see
Conjecture 3.4.1, and thus impossibility of TONS privacy amplification would be
proven. A particularly simple “bias-the-last-bit” attack provides further strong evi-
dence for the impossibility of TONS privacy amplification; a lower bound of 1/2 +

ε/2 on the knowledge of the adversary for random functions and a lower bound of
1/2 + (1 − γ1)ε/2 for all but an exponentially small fraction (exponentially small
in γ1, doubly exponentially small in n) of all functions f (a≤n), see Theorems 3.5.2
and 3.5.3. Our construction comprises “prefix-code” attacks, used in [AFTS12]
to derive the strongest known bound on the adversaries knowledge of 1/2 + ε/n
for general privacy-amplification functions. Using a theorem by Kahn, Kalai, and
Linial [KKL88] from the field of analysis of Boolean functions, we show that this
bound can be strengthened for monotonic functions to 1/2 + ε · θ(log(n)/n), see
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Theorem 3.5.10. For majority functions, “prefix-code” attacks yield a bound of
1/2 + ε · θ(1/

√
n). With our construction we derive a much stronger attack, which

yields a bound of more than 1/2+ε in the limit of large n, see Theorem 3.5.14; the at-
tack proves that TONS privacy amplification with majority functions is impossible.
We show that our construction can also be used to derive dynamic TONS attacks,
where the time-ordering of the subsystems of Alice and Bob is permuted, see Theo-
rem 3.6.2. We use these attacks to derive bounds on nonlocality distillation protocols
in Chapter 4. In Section 3.7, we present further evidence that if TONS privacy am-
plification is impossible, then our construction should also be powerful enough to
prove this: an analogous construction for the stronger ABNS adversary retrieves
the fact that privacy amplification is impossible against this adversary [HRW13]. In
Section 3.8, we show that all of the above results also hold for privacy-amplification
protocols on more general distributions Vε(ab | xy), which are relevant for secret-ket
distribution protocols based on other Bell inequalities than the CHSH inequality.

5.2 Results on nonlocality distillation

In a nonlocality-distillation protocol two players, Alice and Bob, generate, without
communication, a box P̂(ab | xy) with a higher degree of nonlocality than the re-
source boxes P(ab | xy) they use, i.e., CHSH(P̂) > CHSH(P). We present a novel
method to derive bounds on nonlocality distillation protocols using PRε(ab | xy)
boxes as a resource. We construct a third party Eve who gains knowledge on the
output of the distillate P̂(ab | xy) through a no-signalling attack on the resource
boxes. The degree of this knowledge limits the degree of nonlocality of the dis-
tillate CHSH(P̂) if the no-signalling attack on the resources induces also a no-
signalling attack on the distillate. We relate the specifics of the distillation proto-
col, in particular the interaction of the players with the resources, with the con-
straints on the no-signalling attack of the resource. We derive sufficient condi-
tions for the no-signalling attack on the resource boxes to induce a no-signalling
attack on the distillate: the ABNS conditions for non-adaptive distillation protocols
and the dynamic TONS conditions for general distillation protocols. For general
nonlocality distillation protocols using PRε boxes as resource we obtain the bound
CHSH(P̂) ≤ 1 − ε/2n, see Theorem 4.3.6. For nonadaptive protocols we derive a
bound of at most CHSH(P̂) ≤ 1−ε/4 for all values of ε. Since this bound is constant
in n, this implies also the existence of an infinity of values ε, for which distillation is
virtually impossible. These limits on nonlocality distillation also hold if the players
use the more general boxes Vε(ab | xy) as a resource, where the B system and the
correlation between the A system and the B system are completely arbitrary.
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5.3 Outlook

The central open problem of this thesis is the question whether TONS privacy ampli-
fication is possible. It is the author’s firm belief, confirmed for almost all functions as
well as linear and majority functions, that this is not the case. One way to answer the
question in the negative would be to prove Conjecture 3.4.1. Intuitively, this means
to show that ε-Santha-Vazirani distributions Qε−sv(a≤ne) arising from the Reingold
construction can be fine-grained into a set of ordered S-influenceable distributions
{Qo−S(a≤ne)}.

We confined our analysis of TONS privacy amplification to the case of two par-
ties, Alice and Bob, and a privacy-amplification function f (a≤n) that depends only
on Alice’ systems. If in this case TONS privacy amplification turns out to be im-
possible, then, in order to investigate if feasible key distribution based on mini-
mal assumptions is possible, one needs is to consider multipartite time-ordered-no-
signalling systems with a fixed number of parties and privacy-amplification func-
tions that depend on the outputs of systems of several parties. A no-go theorem
for privacy amplification in this multipartite scenario would bear the insight, that in
general no-signalling theories the achievable secrecy against an outside observer is
limited by the space the parties control — rather than by the amount of repetitive
“measurements”, which are just interactions with boxes in the present context. Such
a relation between information and space would parallel efforts from, e.g., the field
of black hole thermodynamics, where the amount of information (entropy) contained
in a volume of space is limited by the size of its surface [tH93], [Sus95].
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