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INTRODUCTION

The behavior of a bipartite input/output systemPXY|UV is non-local if it cannot be ex-
plained by pre-shared information. For example, the measurement choice/outcome be-
havior of certainentangledquantum states is non-local. As an application, non-locality
can imply device-independent unconditional secrecy in quantum cryptography [1]: hid-
den parameters that do not exist cannot be known by the adversary; and the stronger the
non-locality the more secret is the respective information. Non-local correlations can
also be seen as a resource to fulfill distributed tasks [2].

Non-locality of a binary input/output system is typically characterized by the
Popescu-Rohrlich Machine (PRM) [3] that, on inputsX and Y, produces random
outputsU andV such thatX ⊕Y = U ·V. Quantum mechanically, PRM behavior can
only be simulated with an accuracy of roughly 85% [4] whereasthe classical limit is
75% [5].

The question of how much non-locality there is in a given system’s behavior — where
non-locality is quantified by partitioning the behavior into a local part of maximal weight
and the remaining non-local part — has first been asked in [6] (see also [7]). We study
here the local part of (a number of) imperfect PRMs, e.g., thelocal part of a perfect
PRM is zero. Our main result is that the local part ofn symmetricε-PRMs is of order
Θ(ε⌈n/2⌉) and that the local part ofn maximally biasedδ -PRMs is exactly(3δ )n (see
also [8]).

DEFINITIONS

Note that we restrict ourselves to bipartite systems although generalizations to more
parties are possible. These bipartite systems take an inputand yield an output from a
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well-defined alphabet on each side (i.e., to each party) and can be characterized by a
conditional probability distributionPXY|UV(x,y,u,v) whereU andV are the inputs, and
X andY are the outputs on the respective sides.

DEFINITION 1 A bipartite conditional probability distribution PXY|UV(x,y,u,v) is
callednon-signalingif the two parties cannot use it to transmit information, i.e.,

∑
x

PXY|UV(x,y,u,v) = ∑
x

PXY|UV(x,y,u′,v) ∀y,v

and similar when the role of the two parties are reversed. It is calledlocal deterministic
if it can be written as

PXY|UV = δx, f (u) ·δy,g(v) ,

where f : U → X and g: V →Y andδ is the Kronecker symbol; and it islocal if it is a
convex combination of local deterministic probability distributions.

We will only consider non-signaling probability distributions in this paper. Note that
the space of all non-signaling probability distributions over a certain input/output alpha-
bet is convex. All local probability distributions can be simulated by two distant parties
using a pre-agreed strategy and shared randomness — the shared randomness determines
which local deterministic probability distribution to use, and respective output is then a
deterministic function of the input (on the same side).

DEFINITION 2 Given a bipartite non-signaling probability distributionPXY|UV , the
maximum p,0≤ p≤ 1, such that PXY|UV can be written as the convex combination of a
local and a non-signaling probability distribution is called itslocal part:

PXY|UV = p ·Plocal +(1− p) ·Pns .

A probability distribution is local if and only if its local part is equal to one. However,
in the special case of probability distributions taking binary input and giving binary
output, there is a simple inequality which can be used to determine if a probability
distribution is local.

PROPOSITION 1 (Bell [5]) A bipartite probability distribution PXY|UV taking binary
input and giving binary output is non-local if, for uniform inputs,

P(X⊕Y = U ·V) > 0.75 .

Note that, up to relabelling of the inputs and outputs, the above condition is in fact
equivalent to non-locality. After [9], we denote the condition X⊕Y = U ·V by CHSH-
condition.

For more than two inputs and outputs, the following Lemma 1 will be of use.

LEMMA 1 Consider two non-signaling probability distributions PXY|UV and Pns,1. The
former one can be written as PXY|UV = p ·Pns,1 +(1− p) ·Pns,2 (where Pns,2 is a second
non-signaling probability distribution) if and only if

p ·Pns,1(x,y,u,v) ≤ PXY|UV(x,y,u,v) ∀x,y,u,v .



Proof. FORWARD DIRECTION: Since bothPXY|UV andPns,1, are normalized and non-
signaling,Pns,2 is also normalized and non-signaling (both properties are linear). Now,
sincePns,2(x,y,u,v) = (1/(1− p))(PXY|UV(x,y,u,v)− p·Pns,1(x,y,u,v)), which is larger
than zero by assumption, the forward direction follows. REVERSE DIRECTION: Assume
that p ·Pns,1(x,y,u,v) > PXY|UV(x,y,u,v) for somex,y,u,v. ThenPns,2(x,y,u,v) < 0 and
thusPns,2 is not a probability distribution.

We will study in this paper two particular non-signaling probability distributions:

DEFINITION 3 A symmetricε-PRM (denoted by P1,ε
XY|UV for oneε-PRM) and amaxi-

mally biasedδ -PRMare bipartite conditional probability distribution givenby the prob-
ability tables below.
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SYMMETRIC ε-PRMS

We now study the case of symmetricε-PRMs (ε ∈ [0,0.25]), i.e., PRMs that fulfill the
CHSH-condition with probability 1− ε for all inputs and unbiased output bits.

By Lemma 1, we can write any non-signaling probability distribution as

PXY|UV = pi ·Pld,i +(1−∑
i

pi) ·Pns

wherePld,i are the different local deterministic strategies fixed by the input and output
size. Together with the definition of the local part this implies the following two lemmas.

LEMMA 2 The local part is the optimal value of the linear program:

max: ∑
i

pi s.t. ∑
i

pi ·Pl−d,i(x,y,u,v) ≤ PXY|UV(x,y,u,v) and pi ≥ 0 .

LEMMA 3 The local part of P1,ε
XY|UV is 4ε.

Now, consider the case of two independent symmetricε-PRMs. We can write these
two machines as one single machine taking 2 input bits and giving 2 output bits on each
side:

P2,ε
XY|UV(x,y,u,v) = P2,ε

XY|UV((x1x2),(y1y2),(u1u2),(v1v2))

= P1,ε
XY|UV(x1,y1,u1,v1) ·P

1,ε
XY|UV(x2,y2,u2,v2) .



Obviously it is always possible to write each of the two machines separately as a
combination of one local and one non-local machine. This would give a local weight
of (4ε)2. However, the local part might be larger and, indeed, Lemma 2and 3 show
that the local part of two symmetricε-PRMs is the same as the local part of one single
symmetricε-PRM.

LEMMA 4 P2,ε
XY|UV = (4ε) ·P2,local

XY|UV +(1−4ε) ·P2,0
XY|UV .

This shows that it is neither possible to use two symmetricε-PRMs in parallel to
create a betterε-PRM, nor to create a more secure bit from the outputs of twoε-PRMsby
applying a function (where we assume that the inputs are public).

We now consider the case of any numbern of independent symmetricε-PRMs.

LEMMA 5 For every local deterministic strategy for n PRMs, there always exist inputs
u and v such that xi ⊕yi 6= ui ·vi for at least n/2 of the indices i.

Proof. Assume, wlog, thatx(~0) =~0. Consider the caseu =~0. For at mostk out of then
instances to fail,y(v) must have Hamming weight at mostk (independently ofv). Now,
considery(x̄(~1)): For all n instances to be correct for Inputu =~1, y(x̄(~1)) must be equal
to x(~1) exactly at the positions wherex(~1) is ’1,’ i.e., y(x̄(~1)) =~1. Thus, for at mostk
instances to fail,y(x̄(~1)) must have Hamming weight at leastn−k. Sincek < n/2, this
contradicts the fact thaty(v) must have Hamming weight at mostk.

THEOREM 1 The local part of n symmetricε-PRMs is of orderΘ(ε⌈
n
2⌉).

Proof. It is easy to see that this order can be reached as a local part of (4ε)⌈
n
2⌉ can be

achieved by combining theε-PRMs in pairs. On the other hand, Lemma 5 implies that
it is of orderO(ε⌈

n
2⌉).

MAXIMALLY BIASED δ -PRMS

Consider a PRM which fullfills the CHSH-condition in three out of the four input-cases
with proability 1− δ and in the fourth case perfectly, and where the output bitX is
maximally biased towards zero.

A simple maximization shows that the local part of one maximally biasedδ -PRM is
3δ . More generally, it is possible to show

THEOREM 2 The local part of n maximally biasedδ -PRMs is(3δ )n.
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