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Abstract—A consequence of Landauer’s slogan “Information
Is Physical,” when combined with the second law of thermody-
namics, is Landauer’s erasure principle: Deleting a binary string
of length N requires work proportional to N . We suggest to
modify the principle in different respects. First, we consider the
erasure process constructively, i.e., as an algorithm carried out
by a Turing machine. Second, we claim the erasure price to be
lower for redundant, i.e., compressible strings (given the demon’s
algorithmically constructive information about the string). Third,
our bounds are functions only of the objects in question (the
string and the extractor’s knowledge) and do not depend on any
context such as a probability distribution. We pursue the idea that
the erasure cost measures intrinsic randomness (applicable, e.g.,
to quantum correlations), and we finally turn back our attention
to the second law of thermodynamics for which we propose a
version relating it more closely to Turing- than steam machines.

I. LANDAUER’S PRINCIPLE AND ITS CONVERSE

According to Landauer [13], “information is physical:” Any
information generation, storage, processing, and transmission
is ultimately physical and must be understood as such. A
consequence of this insight is Landauer’s principle [12]:
Erasing N bits of information costs an amount of at least
kTN ln 2 of free energy which is then dissipated as heat to
the environment (of temperature T ; k is Boltzmann’s constant;
“erasing N bits” stands for “forcing the corresponding N
binary degrees of freedom into the state 0”). The principle has
been derived by Landauer from the second law of thermody-
namics: The reduction of entropy within the storage device
must be compensated by an increase, of at least the same
amount, in environmental entropy.

We suggest to modify Landauer’s principle in the following
respects: First, we claim the erasure cost to be proportional
to the length of a compression of the string in question,
not to its full length. Second, the erasure device’s knowl-
edge is taken into account, and it can reduce the erasure
cost. In line with the Church-Turing hypothesis,1 the erasure
process, and, hence, also the nature of this knowledge, are
understood algorithmically-constructively, i.e., to be computed
by a Turing machine. The resulting erasure price is context-
free and depends only on the objects in question, i.e., on the
string and the Turing machine including its tape’s initial state
(the “knowledge”), but does not involve entropies, not even
probability distributions.

1The Church-Turing hypothesis states that all physically possible processes
can be simulated by a Turing machine.

In the context of his resolution of Maxwell’s demon’s para-
dox, Bennett [3] stated the converse of Landauer’s principle:
If the demon’s memory initially is in the all-0-state, and it
is randomized after the sorting procedure, then that initial 0-
string can be regarded as the resource carrying the free energy
required for the sorting. Explicitly, the converse of Landauer’s
principle states that (a physical representation of) the string 0N

of length N has work value kTN ln 2. If, for example, the N
bits are encoded in N gas molecules being on the left vs.
the right half of a container, respectively, then the all-0-string
corresponds to a compressed gas — with work value.

We directly connect, for any physical representation of a
binary string, its work value and erasure cost: They add up to
the full length of the string. So, any bound on the work value
yields a bound on the erasure cost. We review the state of the
art on work extraction.

II. WORK EXTRACTION: STATE OF THE ART

A. The Results by Bennett and by Zurek

Bennett [3] claimed the work value of a string S to be
its length minus the algorithmic entropy, the latter being the
length of the shortest program that lets a fixed universal Turing
machine U output S. The algorithmic entropy of S has also
been called Kolmogorov complexity K(S) of S [11]:

WV(S) = len(S)−K(S)

(let for simplicity kT ln 2 = 1). Bennett’s argument is that S
can be logically, hence, thermodynamically [10] reversibly
mapped to the string P ||000 · · · 0, where P is the shortest
program for U generating S and the length of the generated
0-string is len(S)−K(S) (see Figure 1).
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Figure 1. Bennett’s argument



It was already pointed out by Zurek [18] that whilst it
is true that the reverse direction exists and is computable
by a universal Turing machine, its forward direction, i.e.,
obtaining P from S, is uncomputable. This means that a
demon that could carry out this work-extraction computation
on S does not exist under the Church-Turing hypothesis. We
will see, however, that Bennett’s value is an upper bound on
the work value of S (and may even be reasonably tight in
many cases). Bennett also links the string’s erasure cost to its
probabilistic entropy [5].

B. The Results by Szilárd and by Dahlsten et al.
Dahlsten et al. [7] follow Szilárd [14] in putting the knowl-

edge of the demon extracting the work to the center of their
attention. More precisely, they claim

WV(S) = len(S)−D(S) ,

where the “defect” D(S) is bounded from above and below
by a smooth Rényi entropy of the distribution of S from the
demon’s viewpoint, modeling her ignorance.

Building on the mentioned results and in the same proba-
bilistic model, the cost of erasure [8] as well as of general
computations [9] have been linked to entropic expressions of
(conditional) probability distributions.

Comparison and Discussion. The work [7] does not consider
the algorithmic aspects of the demon’s actions extracting the
free energy, and it is based on the demon’s probabilistic-
entropic knowledge on S. If we want, in the spirit of the
Church-Turing hypothesis, to model the demon as an algo-
rithmic apparatus, then we should specify the nature of that
knowledge explicitly: Vanishing conditional entropy only says
that S is uniquely determined from the demon’s viewpoint;
this can either mean that the demon has a copy of S (or at
least the ability to compute one), or the knowledge is weaker,
merely singling out S in a non-constructive way. We will
see below in detail how this ambiguity sits at the origin of
the gap between the two described groups of results; it is
maximal when the demon fully “knows” S which, however,
still has maximal Kolmogorov complexity given her internal
state. In this case, the first result claims WV(S) to be 0,
whereas WV(S) ≈ len(S) according to the second. The gap
disappears if “knowing S” is understood in the constructive
as opposed to entropic sense, and the demon can access an
extra copy of S — besides the “original” S from which work
is to be extracted. If that extra copy is included in Bennett’s
reasoning, then his result reads

WV(S||S) ≈ 2 len(S)−K(S) ≈ len(S) .

III. WORK EXTRACTION AS DATA COMPRESSION

We analyze the case of a demon with knowledge and
understand work extraction to be a computation carried out
by this demon.

A. The Model

We assume the demon to be a universal Turing machine U
the memory tape of which is sufficiently long for the inputs
and tasks in question, but finite. The tape initially contains S,
the string the work value of which is to be determined, X , a fi-
nite string modeling the demon’s knowledge about S, and 0’s
for the rest of the tape. After the extraction computation,
the tape contains, at the bit positions initially holding S, a
(shorter) string P plus 0len(S)−len(P ), whereas the rest of
the tape is (again) the same as before work extraction. The
demon’s operations are logically reversible and can, hence,
be carried out thermodynamically reversibly [10]. Logical
reversibility is the ability of the same demon to carry out
the backward computation step by step, i.e., from P ||X
to S||X . We denote by WV(S|X) the maximal length of an
all-0-string extractable logically reversibly from S, given the
knowledge X , i.e.,

WV(S|X) := len(S)− len(P )

if P ’s length is minimal (see Figure 2).
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Figure 2. The model of work extraction with knowledge

B. Lower Bound on the Work Value

We show that every specific data-compression algorithm
leads to a lower bound on extractable work. Let C be a
computable function

C : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗

such that
(A,B) 7→ (C(A,B), B)

is injective. We call C a data-compression algorithm with
helper. Then we have

WV(S|X) ≥ len(S)− len(C(S,X)) .

This can be seen as follows. First, note that the function

A||B 7→ C(A,B)||0len(A)−len(C(A,B))||B

is computable and bijective. From the two (possibly irre-
versible) circuits computing the compression and its inverse,
one can obtain a reversible circuit realizing the function such
that no further input or output bits are involved. This can
be achieved by first implementing all logical operations with
Toffoli gates and uncomputing the “junk” [4] in both circuits.



The resulting two circuits have now still the property that
the input is part of the output. As a second step, we can
simply combine the two such that the first circuit’s first
and second outputs become the second’s second and first
inputs, respectively. Roughly speaking, the first computes the
compression and the second reversibly uncomputes the raw
data. The combined circuit has only the compressed data plus
the 0’s as the output, sitting on the bit positions carrying the
input before. (This circuit is roughly as efficient as the less
efficient of the two irreversible circuits for data compression
and decompression, respectively.) We assume the reversible
circuit to be hard-wired in the demon. A typical example for an
algorithm that can be used here is universal data compression
à la Ziv-Lempel [17].

C. Upper Bound on the Work Value

We have the following upper bound on the extractable work:

WV(S|X) ≤ len(S)−KU (S|X) ,

where KU (S|X) is the conditional Kolmogorov complexity
(with respect to the demon U) of S given X , i.e., the length
of the shortest program P for U that outputs S, given X .
The reason is that the demon is only able to carry out the
computation in question (logically, hence, thermodynamically)
reversibly if she is able to carry out the reverse computation
as well. Therefore, the string P must be at least as long as the
shortest program for U generating S if X is given.

Although the same is not true in general, this upper bound
is tight if KU (S|X) = 0. The latter means that X itself
is a program for generating an additional copy of S. The
demon can then bit-wisely XOR this new copy of S to
the original S (to be work-extracted) on the tape, hereby
producing 0len(S) reversibly to replace the original S, at the
same time saving the new one, as reversibility demands. When
Bennett’s “uncomputing trick” is used — allowing to make any
computation by a Turing machine logically reversible [4] —,
then a history string H is written to the tape during the
computation of S from X such that after XORing, the demon
can, in a (reverse) stepwise manner, uncompute the generated
copy of S and end up in the tape’s original state — except
that the original S is now replaced by 0len(S): This results in
a maximal work value matching the (in that case trivial) upper
bound.

Discussion. Let us compare our bounds with the entropy-based
results of [7]: According to the latter, a demon knowing S
entirely is able to extract maximal work: WV(S) ≈ len(S).
What does it mean to “know S”? The knowledge can consist
of (a) a copy of S, or of (b) its ability to compute such a copy
with a given program P , or (c) it can determine S uniquely
without providing the ability to compute it (see Figure 3).

The constructive versus the entropic results are in accor-
dance in the cases (a) and (b), but are in conflict in case (c): For
instance, assume the demon’s knowledge about S is: “S equals
the first N bits ΩN of the binary expansion of Ω.” Here, Ω
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“S is
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(c)

Figure 3. Ways of knowing S

is the so-called halting probability [6] of a fixed universal
Turing machine A (e.g., the demon U itself). Although there
is a short description of S in this case, and S is thus uniquely
determined in an entropic sense, it is still incompressible, even
given that knowledge:

KU (Ωn | “It is bits 1–n of TM A’s halting probability”) ≈ n :

No work is extractable according to our upper bound. This
gap opens whenever the “description complexity” is smaller
than the Kolmogorov complexity. (Note that a self-referential
argument, called Berry paradox, shows that the notion of
“description complexity” is problematic and can never be
defined consistently for all strings.)

IV. MODIFYING LANDAUER’S PRINCIPLE

A. Connection to Work Value

For a string S ∈ {0, 1}N , let WV(S|X) and EC(S|X) be its
work value and erasure costs, respectively, given an additional
string X (a “catalyst” which remains unchanged, as above).
Then

WV(S|X) + EC(S|X) = N .

To see this, consider first the combination extract-then-erase.
Since this is one specific way of erasing, we have

EC(S|X) ≤ N −WV(S|X) .

If, on the other hand, we consider the combination erase-then-
extract, this leads to

WV(S|X) ≥ N − EC(S|X) .



B. Bounds on the Erasure Cost

Given the results on the work value above, as well as the
connection between the work value and erasure cost, we
obtain the following bounds on the thermodynamic cost of
erasing a string S by a demon, modeled as a universal Turing
machine U with initial tape content X .

Landauer’s principle, revisited. Let C be a computable
function C : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗ such that
(A,B) 7→ (C(A,B), B) is injective. Then we have

KU (S|X) ≤ EC(S|X) ≤ len(C(S,X)) .

V. RANDOMNESS AND QUANTUM CORRELATIONS;
REVERSIBILITY AND THE SECOND LAW

Landauer’s revised principle puts forward two ideas: First,
the erasure cost is an intrinsic, context-free, physical measure
for randomness (entirely independent of probabilities and
counterfactual statements of the form “some value could just
as well have been different”). The idea that the erasure cost —
or the Kolmogorov complexity related to it — is a measure
for randomness (independent of probabilities) can be tested
in a context in which randomness has been paramount: Bell
correlations [2] predicted by quantum theory. In a proof
of principle, it was shown [16] that in essence, a similar
mechanism as in the probabilistic setting arises: If the cor-
relation is non-local and the inputs are incompressible and
non-signaling holds, then the outputs must be highly complex
as well. This allows for a discussion of quantum correlations
without the usual counterfactual arguments used in derivations
of Bell inequalities (combining in a single formula results
of different measurements that cannot actually be carried out
together). Furthermore, this opens the door to novel function-
alities, namely complexity amplification and expansion [1].
What results is an all-or-nothing flavor of the Church-Turing
hypothesis: Either no physical computer exists that is able to
produce non-Turing-computable data — or even a “device” as
simple as a single photon can.

The second idea starts from the observation that the price
for the logical irreversibility of the erasure transformation
comes in the form of a thermodynamic effort.2 In an attempt
to harmonize this somewhat hybrid picture, we invoke
Wheeler’s [15] “It from Bit: Every it — every particle, every
field of force, even the spacetime continuum itself — derives
its function, its meaning, its very existence entirely [...]
from the apparatus-elicited answers to yes-or-no questions,
binary choices, bits.” This is an anti-thesis to Landauer’s
slogan, and we propose the following synthesis of the two:
If Wheeler motivates us to look at the environment as
being information as well, then Landauer’s principle may
be read as: The necessary environmental compensation for

2Since the amount of the required free energy (and heat dissipation) is
proportional to the length of the best compression of the string, the latter can
be seen as a quantification of the erasure transformation’s irreversibility.

the logical irreversibility of the erasure of S is such that the
overall computation, including the environment, is logically
reversible: no information ever gets completely lost.

Second law, logical-computational version. Time evolutions
are injective: Nature computes with Toffoli, but no AND or
OR gates.

(Note that this fact is a priori asymmetric in time: The
future must uniquely determine the past, not necessarily vice
versa. In case the condition holds also for the reverse time
direction, the computation is deterministic, and randomized
otherwise.)

If logical reversibility is a simple computational version of a
discretized second law, does it have implications resembling
the traditional versions of the law? First of all, it leads
to a “Boltzmann-like” form, i.e., the existence of a quantity
essentially monotonic in time. More specifically, the logical
reversibility of time evolution implies that the Kolmogorov
complexity of the global state at time t can be smaller than
the one at time 0 only by at most K(Ct)+O(1) if Ct is a string
encoding the time span t. The reason is that one possibility
of describing the state at time 0 is to give the state at time t,
plus t itself; the rest is exhaustive search using only a constant-
length program simulating forward time evolution (including
possible randomness).

Similarly, logical reversibility also implies statements
resembling the version of the second law due to Clausius:
“Heat does not spontaneously flow from cold to hot.” The
rationale here is explained with a toy example: If we have
a circuit — the time evolution — using only (logically
reversible) Toffoli gates, then it is impossible that this circuit
computes a transformation mapping a pair of strings to another
pair such that the Hamming-heavier of the two becomes even
heavier whilst the lighter gets lighter. A function accentuating
such imbalance instead of lessening it is not injective, as a
basic counting argument shows.

Example. Let a circuit consisting of only Toffoli gates map an
N(= 2n)-bit string to another. We consider the map separately
on the first and second halves and assume the computed
function to be conservative, i.e., to leave the Hamming weight
of the full string unchanged at n (conservativity can be seen as
some kind of first law, i.e., the preservation of a quantity). We
look at the excess of 1’s in one of the halves (which equals
the deficit of 1’s in the other). We observe that the probability
(with respect to the uniform distribution over all strings
of some Hamming-weight couple (wn, (1 − w)n)) of the
imbalance substantially growing is exponentially weak. The
key ingredient for the argument is the function’s injectivity.
Explicitly, the probability that the weight couple goes from
(wn, (1 − w)n) to ((w + ∆)n, (1 − w − ∆)n) — or more
extremely —, for 1/2 ≤ w < 1 and 0 < ∆ ≤ 1− w, is(

n
(w+∆)n

)(
n

(1−w−∆)n

)(
n
wn

)(
n

(1−w)n

) = 2−Θ(n) .



Note here that we even get the correct, exponentially weak
“error probability” with which the traditional second law can
be “violated.”

Finally, logical reversibility also implies statements resem-
bling Kelvin’s version of the second law: “A single heat bath
alone has no work value.” This, again, follows from a simple
counting argument. There exists no reversible circuit that, for
general input environments (with a fixed weight — intuitively:
heat energy), extracts redundancy, i.e., work value, and con-
centrates it in some pre-chosen bit positions: Concentrated
redundancy is more of it.

Example. The probability that a fixed circuit maps a “Ham-
ming bath” of length N and Hamming weight w to another
such that the first n positions contain all 1’s and such that the
Hamming weight of the remaining N − n positions is w − n
(again, we are assuming conservation here) is(

N−n
w−n

)(
N
w

) = 2−Θ(n) .

Discussion. We propose a logical view of the second law
of thermodynamics: the injectivity or logical reversibility of
time evolution. (This is somewhat ironic as the second law
has often been related to its exact opposite: irreversibility.)
It implies, within the Church-Turing view, Clausius-, Kelvin-,
and Boltzmann-like statements — including their “failure
probabilities.”

VI. CONCLUSION

Using new, constructive results on work extraction and a
direct connection between extraction and erasure, we propose
a reformulation of Landauer’s principle, essentially stating
that the erasure cost of a string is not proportional to its length,
but to the one of its best compression. We have taken into
account the case where the erasing demon possesses initial
knowledge about the string to be deleted, in the form of some
fixed additional string. We have argued, in the spirit of the
Church-Turing hypothesis, that the constructive-algorithmic, as
opposed to entropic, power of the knowledge is relevant. In this
same view, time evolutions are considered to be computed by
a Turing machine, and Landauer’s principle, when combined
with Wheeler’s “It from Bit,” naturally leads to a simple for-
mulation of the second law of thermodynamics as a property
of this very computation, namely logical reversibility: It alone
implies historical versions (due to Boltzmann, Clausius, or
Kelvin) of the law.
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