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Abstract—Remarkably, it has been shown that in principle,
security proofs for quantum key-distribution (QKD) protocols
can be independent of assumptions on the devices used and
even of the fact that the adversary is limited by quantum
theory. All that is required instead is the absence of any
hidden information flow between the laboratories, a condition
that can be enforced either by shielding or by space-time
causality. All known schemes for such Causal Key Distribution
(CKD) that offer noise-tolerance (and, hence, must use privacy
amplification as a crucial step) require multiple devices carrying
out measurements in parallel on each end of the protocol, where
the number of devices grows with the desired level of security.
We investigate the power of the adversary for more practical
schemes, where both parties each use a single device carrying out
measurements consecutively. We provide a novel construction
of attacks that is strictly more powerful than the best known
attacks and has the potential to decide the question whether
such practical CKD schemes are possible in the negative.

I. INTRODUCTION

The use of quantum theory in cryptography allows for
realising a task classically impossible unless assumptions
are made on the computational power of the adversary:
starting from a small shared secret key, two parties Alice and
Bob can generate much longer secret keys. Such quantum
cryptography goes back to the celebrated seminal work by
Charles Bennett and Gilles Brassard in 1984 [6]. They devised
a protocol based on the exchange of single quantum bits, e.g.,
coded into the polarisation of single photons. The security of
the protocol depends on the assumptions sketched in Figure 1.
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Fig. 1. Schematic setup of QKD protocols with assumptions (1)-
(4). The boxes around the legitimate parties’ laboratories indicate
protection against unwanted information leakage (1). The R’s
are the sources of free randomness2(2) used as the inputs (x, y)
to the devices D which generate, and operate on, the specified
quantum systems (4). CC refers to a classical insecure (but authen-
ticated) channel to which the adversary Eve also has access. QC is a
completely insecure quantum channel which Eve may interfere with
to an unspecified extent. The dotted box indicates that the protocol
takes place within the rules of quantum theory (3).

It lies in the spirit of cryptography to reduce the assump-
tions under which security can be proven. In the physics
community, quantum key distribution became prominent and
popular through the work of Artur Ekert [13], who presented
a protocol based on entangled pairs of quantum bits, and on
the phenomenon of non-local correlations [5]: If the joint
behaviour, under measurements, of two parts of a system is
stronger than what can be explained by shared (classical)
information, one speaks of non-local correlations since no
local hidden-variable model alone can lead to the behaviour
(alone). A joint two-partite input-output behaviour, also called
system in the following, is recognised to be non-local if it
violates some Bell inequality, the latter being respected by all
local systems. The rationale of Ekert’s method is as follows
(see also Figure 2): If, after exchange and measurement on
the two parts of the entangled pair, respectively, a (virtually)
maximal violation of a specific Bell inequality, due to Clauser,
Horne, Shimony, and Holt [11], occurs, then the shared
state must be (close to) a maximally entangled pair of
quantum bits. Furthermore, (the completeness of) quantum
theory implies that the outcomes when such a singlet state is
measured are (a) perfectly correlated with each other yet at
the same time (b) completely uncorrelated with any (classical
or quantum) information outside the two laboratories (and,
hence, potentially under an adversary’s control); the latter
follows from a state violating maximally the CHSH inequality
necessarily being pure. Ekert’s result (and [18] when dealing
with noise) has been a big step towards device-independent
security [1] and the possibility of dropping assumption (4)
(see Figure 1). Vazirani and Vidick [22] devised a scheme
similar to Ekert’s, where the two parties could each reuse
a single device to achieve full device-independent security
even tolerating (a certain level of) noise. They proved that
the partial security of the raw key consisting of the (measure-
ment) outputs of the devices can be amplified using standard
privacy-amplification techniques [8], [7], [16]. However, even
their security proof, like Ekert’s, rests on the validity of
the entire Hilbert-space formalism of quantum theory. It is
natural to ask whether it is possible to derive security of the
final key directly and only from the (extent of) non-locality
of the generated values (see Figure 2), together with the
assumption that no hidden communication has taken place
between the laboratories. Barrett, Hardy, and Kent [4] have

2We refer to the notion of free randomness used by Colbeck and Renner
in [12]: A random variable, generated at some point in space-time, displays
free randomness if it is independent of any variable which lies outside its
future light-cone.
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Fig. 2. Ekert’s reasoning: If a system violates the CHSH inequality
virtually maximally (i.e., close to Tsirelson’s bound [10]), then the
framework of quantum theory implies that the state of the system
must be close to a maximally entangled and, hence, pure state, a
Bell state. The purity of the entangled state implies the secrecy of
the local measurement outcomes. This reasoning is strongly based on
the formalism of quantum theory.
Barrett, Hardy, and Kent’s reasoning: A Bell-inequality violation
indicates a non-local correlation that directly implies a constraint
on the predictive power of any external piece of information (such
as, e.g, Eve’s entire knowledge) about Alice and Bob’s measurement
outcomes. This reasoning is independent of quantum theory.

shown that in principle, the answer is yes: They presented a
protocol generating a secret key under the sole assumption
that no illegitimate communication takes place between the
laboratories. Note that such “causal key agreement” requires
neither Assumption (3) nor (4) above, see Figure 1.

Motivated by this proof of principle, several authors have
worked on developing protocols that are based on the CHSH
inequality instead of the chained Bell inequality [9], and that
are not only more efficient but also tolerant to noise [14], [17].
However, besides the no-signalling assumption between the
parties, the protocols’ security proofs must be based on the
same condition within their laboratories in order to perform
privacy amplification.3 Actually, in [15], the impossibility of
privacy amplification was shown if there are no additional
no-signalling conditions assumed. Yet, if Alice and Bob reuse
their devices, then previously obtained outputs cannot depend
on future inputs as a consequence of (2); the corresponding
additional conditions are termed time-ordered no-signalling
(TONS) conditions. In [3], it was shown that under the TONS
conditions, super-linear privacy amplification is impossible:
Using class of attacks which we refer to as “prefix-code
attacks” (see Definition III.6), they showed that if n is
the length of the input to the amplification function, then
the adversary’s knowledge on the output is at least of
order o(1/n). Furthermore, prefix-code attacks rule out the
use of linear privacy-amplification functions (which are used
for 2-universal hashing) as here the adversary’s knowledge
on the output remains constant (i.e., independent of n).
However, the knowledge prefix-code attacks yield about
non-linear functions is limited, e.g., Θ(1/

√
n) for majority

functions. We present a novel construction of TONS attacks
which comprise prefix-code attacks and, furthermore, can also
provide a constant knowledge on the output for highly non-
linear functions, i.e., an improvement of Θ(

√
n) over prefix-

code attacks in the case of majority. That our attack proves
TONS privacy amplification with linear functions as well
as a highly non-linear function like majority impossible is

3The number of required no-signalling conditions is proportional to the
negative logarithm of the tolerable noise level.

an indicator that the attack is sufficiently strong to rule out
TONS privacy amplification at all. From a practical point of
view impossibility of TONS privacy amplification means that
Alice and Bob necessarily need additional devices which are
shielded against information loss to carry out CKD.

Due to spatial limitations we are forced to omit the detailed
proof of Theorem III.3, Lemma III.7, and Theorem III.8 and
refer the reader to Chapters 3.4.1 and 3.5.4 in [21].

II. PRELIMINARIES

A. No-signalling systems

We refer to a system A as a black box with an interface
consisting of an input x ∈ X and an output a ∈ A,
where its complete input-output behaviour is specified by the
conditional probability distribution P(a |x). If a system A is
shared between m parties, each holding n marginal systems,
then we denote the interface of the i-th marginal system held
by party j by Aji . No-signalling conditions between different
systems simply mean that the input one party inserts into her
system does not affect the output the other party obtains from
her system.

Definition II.1 (m-Party no-signalling). An m-system box

P(a1 . . . am |x1 . . . xm)

is m-party no-signalling if no subset of parties, I1 ⊆ [m],
can signal to any other (disjoint) subset of parties. Defining
I2 to be the complementary set to I1 we have formally∑

aI1

P(aI
1

aI
2 |xI1xI2) =

∑
aI1

P(aI
1

aI
2 | (x′)I1xI2)

∀I1, aI2 , xI1 , (x′)I1 , xI2 . (1)

We introduce the short-hand notation AI
1 ns−→ AI

2

if (1)
is satisfied, i.e., the systems AI

1

do not signal to the
systems AI2 .

Definition II.2 (Marginal). AI
1 ns−→ AI

2

induces a valid
marginal distribution P(aI

2 |xI2) on the systems AI
2

that is
independent of the inputs chosen by the parties in I1.

Definition II.3 (No-signalling extension). A no-signalling ex-
tension of a given system A (possibly consisting of arbitrarily
many subsystems), identified with P(a |x), is any joint system
AE, identified with P′(ae |xu), such that A ns←→ E and the
marginals on A coı̈ncide, i.e., P′(a |x) = P(a |x).

We consider the case of three parties that we identify with
Alice, Bob, and Eve (A1 = A,A2 = B,A3 = E), where
Alice and Bob each hold n subsystems. We use the shorthand
notation A≤n := A1A2...An to define the no-signalling
conditions that are relevant if Alice and Bob each reuse their
devices to create the systems AiBi consecutively.

Definition II.4 (TONS). A (2n+ 1)-system

P(a≤nb≤ne |x≤ny≤nu)

is time-ordered no-signalling (TONS) if no subset of marginal
systems can signal to systems outside its causal future. Any
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union of systems A≤i ∪ B≤j ∪ E≤k, with k ∈ {0, 1} and
0 ≤ i, j ≤ n, must have a valid marginal distribution
P(a≤ib≤je≤k |x≤iy≤ju≤k) induced by the equations∑
a>ib>je>k

P(a≤ia>ib≤jb>je≤ke>k |x≤ix>iy≤jy>ju≤ku>k)

=∑
a>ib>je>k

P(a≤ia>ib≤jb>je≤ke>k |x≤ix′>iy≤jy′>ju≤ku′>k)

∀(a≤i, b≤j , e≤k, x≤i, y≤j , u≤k), (x>i, y>j , u>k),

(x′>i, y
′
>j , u

′
>k), 0 ≤ i, j ≤ n, k ∈ {0, 1} . (2)

B. Some explicit no-signalling distributions

• We denote by U(a |x) a box that outputs a uniformly
random element of the output alphabet A

U(a |x) :=
1

|A| ∀a, x . (3)

• We denote by PR(ab |xy), with A,B,X ,Y = {0, 1}, as
a box with probabilities

PR(ab |xy) :=

{
1
2 if a⊕ b = x · y
0 otherwise . (4)

• We denote by V(ab |xy), with A = {0, 1} and un-
specified alphabets B, X , and Y , as an arbitrary box
that satisfies the no-signalling conditions (1) and has a
uniform marginal on A,∑

b

V(ab |xy) =
1

2
∀a, x, y . (5)

An example for this type of boxes is the PR box or
the boxes corresponding to the chained Bell inequali-
ties [9] considered in [3] and also multi-partite boxes
corresponding to the multipartite Guess Your Neighbours
Input-game [2], since the system B is not specified and
can be composed of an arbitrary number of subsystems.

• We denote by Pε(ab |xy) the noisy version of an
arbitrary box P(ab |xy) as the box with probabilities4

Pε(ab |xy) := (1− 2ε)P(ab |xy) + 2εU(ab |xy) .
(6)

C. No-signalling privacy amplification

The task of privacy amplification is as follows. Suppose
an adversary holding some system E can guess a single
bit ai with probability 1/2 + 2ε, but a complete bit-string
a1 . . . an only with exponentially small probability, let us
say with probability at most (1/2 + 2ε)n. Usually, in a
privacy-amplification protocol, one applies a randomly chosen
function fr, where r denotes the random choice, to obtain a
shorter bit-string s = fr(a1 . . . an), think of a single bit, that
cannot be guessed except with probability (exponentially in
n) close to 1/2. If the adversary E is governed by classical

4We chose this decomposition to be conform with the usual definition of
the “noisy PR-box” PRε when P corresponds to the PR box introduced
originally by Popescu and Rohrlich in [19].

or quantum theory, it is possible to generate a single bit s
that is (exponentially in n) close to uniform if the function
fr is chosen uniformly amongst all linear functions [8], [7],
[16], [20]. In no-signalling privacy amplification, Alice and
Bob hold a box P(a≤nb≤n |x≤ny≤n), and Alice outputs a
Boolean function f(a≤n). To analyse the privacy of such a
bit f(a≤n) against a no-signalling adversary, one considers,
in analogy to the quantum case, an adversary Eve that holds
a “no-signalling purifying marginal system” E with input U .

Definition II.5 (TONS attack). The box

P′(a≤nb≤ne |x≤ny≤nu)

is a time-ordered no-signalling (TONS) attack on the box
P(a≤nb≤n |x≤ny≤n) if it is a no-signalling extension of
P(a≤nb≤n |x≤ny≤n) and satisfies the TONS conditions (2).

We study privacy amplification in the context of secret-key
distribution. Hence, Alice must communicate her choice r of
the privacy-amplification function fr(a≤n) to Bob eventually,
such that they can arrive at a shared secret key in the end
of the protocol. Since we assume that Eve can wiretap the
classical communication between Alice and Bob and learn
the value r, she can wait to use her system E until that
happens and choose her input as a function of r, u(r),
accordingly. Her actions are completely specified by the box
P′(a≤nb≤ne |x≤ny≤nu(r)) and the figure of merit is Eve’s
maximal guessing probability P′(fr(a≤n) = e |x≤nu(r))
on the output of the privacy-amplification protocol. Since
the marginal distribution P(a≤nb≤n |x≤ny≤n) must be, in
particular, independent of u(r), each choice of r can be
investigated independently and we can confine our analysis
on attacks P′(a≤nb≤ne |x≤ny≤n) on fixed functions f(a≤n),
where E has no input. Security against a TONS adversary
stems from systems being non-local, i.e., from systems
violating a Bell inequality. If a no-signalling adversary Eve
attacks, e.g., a single PRε(ab |xy) box, the probability P′(a =
e |x) to guess the output a of Alice is at best 1/2 + 2ε [14],
i.e., which is nontrivial exactly if the box is nonlocal. For
simplicity of the representation, we assume that Alice and
Bob hold n Vε boxes, i.e., the Bell inequality used has binary
outcomes on Alice side and we confine ourselves to the
hardest case, where Alice outcome is completely random in
the noiseless case. The best known previous result on TONS
privacy amplification is as follows.

Lemma II.6. [3] Assume that Eve attacks
V⊗nε (a≤nb≤n |x≤ny≤n) held by Alice and Bob. Then,
for any function f(a≤n), there exists a TONS-attack
P′(a≤nb≤ne |x≤ny≤n)

P′(f(a≤n) = e |x≤n) ≥ 1

2
+

ε

2n
∀x≤n . (7)

III. THE NOVEL ATTACK

A. Novel construction of TONS attacks

We present a novel construction of no-signalling attacks
on V⊗nε . The idea is to decompose each of the n Vε boxes
in a pure and a noise part via (6) and then attack each of
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the 2n terms separately. We identify restrictions (8) and (9)
on marginal (classical) distributions Qo−S(a≤ne) on systems
A≤nE that permit extension to a TONS attack for each of
the 2n terms in the decomposition of V⊗nε .

Definition III.1 (Ordered S-influenceable distributions). For
a set S ∈ P([n]) we define an ordered S-influenceable
distribution Qo−S(a≤ne) as a probability distribution that
satisfies uniformity on a≤n∑

e

Qo−S(a≤ne) = 2−n ∀a≤n and (8)

Qo−S(ai | a<ie) =
1

2
∀a≤i, e, and i ∈ S . (9)

We call the distribution Qo−S(a≤ne) ordered S-influenceable
since condition (9) implies that Eve can only bias the bits ai
with i ∈ S, and, furthermore, for j /∈ S the bits ai can only
be biased with respect to bits aj if j < i.

Definition III.2 (Ordered (ε,S)-divisible distribution).
Fix a full set of ordered S-influenceable distributions
{Qo−S(a≤ne)}. We define an ordered (ε,S)-divisible distri-
bution Qo−ε(a≤ne), as

Qo−ε(a≤ne) :=
∑

S∈P([n])
ω(S, n, ε)Qo−S(a≤ne) , (10)

with weights

ω(S, n, ε) := (1− 2ε)n−|S| (2ε)|S| . (11)

Theorem III.3. Any ordered S-influenceable distribu-
tion Qo−S(a≤ne) can be extended to a TONS-attack
Po−S(a≤nb≤ne |x≤ny≤n) on the systems A≤nB≤n with
marginal distribution

PS(a≤nb≤n |x≤ny≤n) :=
∏
i∈S

U(aibi |xiyi)
∏
i∈S

V(aibi |xiyi)

(12)

The proof of Theorem III.3 consists of an explicit construc-
tion of P′S(a≤nb≤ne |x≤ny≤n):

P′S(e) = Qo−S(e) (13)

P′S(a≤nb≤n |x≤ny≤ne) =

n∏
i=1

P′S(aibi | a<ib<ix≤ny≤ne)

(14)

P′S(aibi | a<ib<ix≤ny≤ne) =

 V(aibi |xiyi) i ∈ S
U(bi | yi)Qo−S(ai | a<ie)

otherwise .
(15)

It is a bit tedious but straightforward to show that (13)-(15)
implies that P′S(a≤nb≤ne |x≤ny≤n)

1) satisfies the TONS-conditions (2),
2) has the correct marginal on systems A≤nB≤n:∑

e

P′S(a≤nb≤ne |x≤ny≤n) = PS(a≤nb≤n |x≤ny≤n),

(16)

3) and has the correct marginal on systems A≤nE:∑
b≤n

P′S(a≤nb≤ne |x≤ny≤n) = Qo−S(a≤ne) . (17)

Corollary III.4. For any ordered (ε,S)-divisible
distribution Qo−ε(a≤ne), there exists a TONS-attack
P′(a≤nb≤ne |x≤ny≤n) on V⊗nε (a≤nb≤n |x≤ny≤n) such
that∑
b≤n

P′(a≤nb≤ne |x≤ny≤n) = Qo−ε(a≤ne) ∀x≤n, y≤n

(18)

Accordingly, we also denote Qo−ε(a≤ne) as a TONS attack.

B. Prefix-code attacks and their limits

Definition III.5 (Influence). We define the influence ∆f (a<i)
of ai given the prefix a<i on the function f(a≤n) as

∆f (a<i) :=
1

2

(
Q(f(a≤n) = 0 | a<i, ai = 0)

−Q(f(a≤n) = 0 | a<i, ai = 1)

)
, (19)

where Q(a≤n) = 2−n.

Definition III.6 (Prefix-code attack). Given a prefix-code
C = {c1, c2, ..., ck} and the function f(a≤n), we de-
fine the corresponding prefix-code attack as the ordered
(ε,S)-divisible distribution Qo−ε(a≤ne) induced by the set
{Qo−S(a≤ne)} defined as

Qo−S(e) =
1

2
, (20)

Qo−S(ai | a<ie) =


1
2

(
1 + sign(∆f (cm))(−1)e⊕ai

)
if ∃m : a<i = cm ∩ i ∈ S ,

1
2 otherwise .

(21)

Lemma III.7. Let the distribution Qo−ε(a≤ne) be a prefix-
code attack on the majority function Majn(a≤n). Then, for
any choice of a prefix-code C = {c1, ..., ck} the performance
of this attack is

Qo−ε(Majn(a≤n) = e) =
1

2
+ ε · 2−n+1

(
n− 1
n−1
2

)
n −→∞ =

1

2
+ Θ

(
ε√
n

)
. (22)

The insight behind the proof of Lemma III.7 is that in a
prefix-code attack Qo−ε(a≤ne) on Majn(a≤n), a single bit
ai is ε-biased towards the value e, while all other bits a 6=i
are uniform when conditioned on e; the influence of a single
bit ai on the value of Majn(a≤n) is of the order Θ

(
ε√
n

)
.
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C. A stronger attack on Majority

We construct another attack Qo−ε(a≤ne) via the set
{Qo−S(a≤ne)}

Qo−S(e) =
1

2
(23)

Qo−S(a≤n | e) = 2−n+1 · δ(MajS(aS), e) , (24)

for |S| being odd (for even |S| we define MajS(aS) as the
majority of all but the last bit). Intuitively, Eve makes a
maximum-likelihood estimate of Majn(a≤n) on the string aS ,
which is to compute MajS(aS). Due to the symmetry of the
majority function with respect to exchange of indices, the
guessing probability Qo−S(Majn(a≤n) = e) of the adversary
depends only on s := |S|.
Theorem III.8. Let |S| = s = c n for some constant
0 < c < 1 such that s is odd. Then there exists a series
of ordered S-influenceable distributions {Qo−S(a≤ne)} such
that

Qo−S(Majn(a≤n) = e)
n→∞

= 1−
arctan

(√
1−c
c

)
π

(25)

Through the concentration of measure around s = 2ε n,
induced by the central limit theorem, a direct consequence
of Theorem III.8 is Corollary III.9.

Corollary III.9. For any δ > 0, there exists a series of
Qo−ε(a≤ne) such that

Qo−ε(Majn(a≤n) = e)
n→∞
≥ 1−

arctan
(√

1−(2ε−δ)
(2ε−δ)

)
π

.

(26)

Lemma III.7 and Corollary III.9 imply an Θ(
√
n) advantage

of our attack on the best previously known attack, the prefix-
code attack.

IV. CONCLUSION

Causal key distribution (CKD) requires only a minimal set
of assumptions, i.e., (1) a shielded laboratory and (2) free
randomness, see Figure 1, which both can be considered
also necessary: If the parties’ laboratories leak information
about the key the adversary eventually learns it. Without
free randomness everything becomes deterministic from the
view of the adversary, and she can compute the key herself.
All CKD protocols that offer noise tolerance [14], [17]
have the impractical requirement for Alice and Bob to use
many devices in parallel, where each device needs to be
shielded against unwanted information leakage individually.
We address the (still) open problem whether CKD is also
possible if Alice and Bob each reuse a single device and
construct a novel attack on the necessary time-ordered no-
signalling (TONS) privacy-amplification step in the CKD
protocol. Our construction is a generalisation of the best
known attack [3], and we prove it to be superior if majority
functions are used for TONS privacy amplification; the
amount of knowledge that our attack provides is optimal (up
to a constant factor). That our attack performs well against

TONS privacy amplification with linear functions as well as
with a highly non-linear function like majority may suggest
that it also powerful enough to prove impossibility of TONS
privacy amplification in general, if this is indeed the case.
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