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1.1 Introduction

Two old friends, who have both become millionaires, want to find out who is
richer without, however, any one of them having to reveal any (additional)
information about their wealth. Is it possible in principle to fulfill this task?

Alice and Bob, the two main characters of contemporary cryptography,
speak on the telephone and would like to do a fair coin flip. Is this possible
at all? Clearly, the obvious way of one party throwing a coin and telling the
result to the other is useless by reasons that should be all too obvious: “I am
sorry, but you lost . . . ”.

The world-wide cryptographers’ union would like to elect a new president
by e-mail in a fair way, i.e., such that nobody can influence the outcome of
the vote beyond delivering her proper ballot.

Clearly, all these tasks are easy to fulfill as long as a trusted party is
present. It is a natural goal to simulate such a party by a protocol between
the involved players. This is called multi-party computation (MPC) and has
been introduced by Yao [50] in 1982. The general setting is that a number of
parties or players want to collaborate in a secure way in order to achieve a
common goal, however they mutually distrust each other and do not want to
make use of a trusted third party, i.e., a distinct player that would carry out
the computation for them. Note that, in contrast to many other problem in
cryptography, the players are not a priori good or bad.

In this chapter we will only look at special case of secure function evalua-
tion , where every party holds an input to a function, and the output should be
computed in a way such that no party has to reveal unnecessary information
about her input. A complete solution for this problem with respect to com-
putational security was given in [30]. In [5, 14], it was shown that in a model
with only pairwise secure channels, MPC unconditionally secure against an
active adversary is achievable if and only if t < n/3 players are corrupted.
In [2, 42] it was shown that this bound can be improved to t < n/2, assuming
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that global broadcast channels are additionally given—and this bound was
shown tight. A protocol more efficient than those in [2, 42] was given in [16].

For the case where n = 2, there cannot exist a protocol that is uncondition-
ally secure, as we will see later. However, if a primitive called oblivious transfer
is assumed, then any function can be calculated unconditionally securely as
has been shown by Kilian [34].

In this work we will present several protocols that implement the basic
primitives of bit commitment, oblivious transfer, and broadcast based on noisy
resources such as noisy channels or correlated randomness.

1.1.1 Basic Primitives

We will now present the basic functionalities in multi-party computation,
where they are used and how they relate to each other.

Bit Commitment.

Bit commitment was introduced in [9]—together with distributed coin-flipping
among two players. Bit commitment is a cryptographic primitive in which at
some point Alice has to commit herself to a value of her choice that Bob
does not get to know. Later, Alice can open her commitment to Bob. It is
guaranteed that she cannot reveal any other value than the committed one.
Bit commitments are used in identification schemes, zero-knowledge proofs,
and general multi-party computation.

Bit commitment implies coin toss. A basic application of bit commitment is
that it can be used to execute a distributed coin toss. This is not hard to
achieve: Alice commits herself to a random bit, then Bob sends her a random
bit, and finally Alice opens her commitment. It can easily be verified that the
XOR of the two bits will always be random if one of the two players is honest.

Oblivious Transfer.

Oblivious transfer, or OT for short, was introduced by Wiesner [44] (under the
name of “multiplexing”) and Rabin [41]. We will be using the variant of OT
introduced in [25], called chosen one-out-of-two oblivious transfer ,

(
2
1

)
−OT

for short, which is the most important version of OT today. Here, the sender
sends two bits b0 and b1 and the receiver’s input is a choice bit c; the latter
then learns bc but gets no information about the other bit b1−c.

OT implies Bit Commitment. Bit commitment can easily be implemented
using n instances of OT. To commit to a value v, the commiter sends random
bits using the n instances of OT, where the XOR of each input pair equals v.
The verifier chooses for each instance one of the two bits randomly. To open
the commitment, the commiter sends all the bits he has sent before. The
verifier checks whether the values match the values he has received before. It
is easy to see that the verifier does not get any information about the value v
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in the commit phase, as he only receives v xored with a random bit. On the
other hand, the commiter cannot change the value he is committed to with
a probability bigger than 2−n, since he would need to be able to change the
value the verifier did not receive, but since he does not know the values ci he
will fail to do so with probability 1

2 in every round.

Pseudo-signature schemes (PSS).

Much less known than classical digital signatures [23, 35] are so-called pseudo-
signature schemes, which guarantee, in contrast to the former, unconditional
security. The inherent price for their higher security, however, is that a sig-
nature can only be transfered a limited number of times. After prior work in
[42, 15], the first complete PSS was proposed in [40]. This scheme allows for
any (constant) transferability λ and any number of corrupted players.

Broadcast.

The broadcast problem was introduced by Lamport, Shostak, and Pease [36].
A protocol where one player can send a value and all players receive a value
achieves broadcast, if all honest player receive the value sent by a honest
sender, and receive the same value, if the sender is malicious. [36] showed
that, in the model with secure channels between all pairs of players, but
without the use of a signature scheme, broadcast is achievable if and only if
the number t of cheaters satisfies t < n/3. Furthermore, it was shown that
when additionally a signature scheme is given among the n players, then
computationally secure broadcast is achievable for any number of corrupted
players. The first efficient such protocol was given in [24]. In [40], an efficient
protocol was given with unconditional security based on a pseudo-signature
scheme with transferability t + 1.

1.1.2 Definition of Security

We will assume that the adversary is unlimited in computing power, and
that his behavior may deviate from the protocol specification in an arbitrary
way. The definition of security used today was given in [38] and [3], which is
based on the so-called real vs. ideal paradigm. The idea behind the definition
is that anything an adversary can achieve in the real life protocol, he could
also achieve by an attack in an ideal world, i.e., where he only has black-box
access to the functionality to be achieved. Such a protocol is secure if for any
adversary in the real life, there exists an adversary in the ideal model such
the both situations produce the same output distribution. A very important
property of this definition is that it implies that the sequential composition
of secure protocols is again a secure protocol, which was shown in [11]. This
greatly simplifies proofs of protocols, as only small parts need to be shown to
be secure.
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1.1.3 Impossibility of Bit Commitment and Oblivious Transfer
from Scratch

It would be preferable to have an implementation of unconditionally secure
bit commitment and OT protocols only using (noiseless) communication. Un-
fortunately, such protocols cannot exist, as we will show now. Assume that
there exists a bit commitment protocol, unconditionally secure for both play-
ers. It must be secure for the receiver, which means that after the commit
phase, given all the communication between the two players, there can only
exist one possible opening for the sender. But this means that the receiver
is able, at least in principle, to calculate that value. Hence such a protocol
would not be unconditionally secure for the sender. It follows that OT is also
impossible to achieve from scratch, since OT implies bit commitment.

1.1.4 Models for Physical Resources

We will consider two different models for a physical system, distributed ran-
domness and channels. Because they are easier to analyze, we will assume
that the physical system perfectly implements these resources, i.e., without
any error. In the last section, we will discuss some more realistic models.

Distributed Randomness. The two players receive values X and Y , distributed
according to a certain distribution PXY , from a resource outside their control.
Such a source could for example be a satellite.

Channel. The two players are connected by a noisy channel, i.e., a resource
where one player can choose an input X, and the other player receives an
output Y , distributed according to a certain conditional distribution PY |X .

1.2 Preliminaries

In this section, we introduce some information-theoretic notions of central
importance in the rest of this article.

Common Part

The common part of two random variables X and Y was first introduced
in [29]. We denote it by X ∧ Y . It is the largest random variable that two
players Alice and Bob knowing the random variables X and Y , respectively,
can commonly extract, without any error, i.e., there exist functions fX and
fY with X ∧ Y = fX(X) = fY (Y ).
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Sufficient Statistics

The sufficient statistics of a random variable X with respect to Y is the part
of X that is dependent on Y . We will use the notion X ↘ Y , as in [28, 46, 47],
where it was called the dependent part. It was also used in [32, 45], where it was
called non-redundant. X ↘ Y can be calculated very easily in the following
way: X ↘ Y := f(X) for f(x) = PY |X=x. It is obtained by collapsing all
values x1 and x2, for which Y has the same conditional distribution, to a
single value.

The following lemma show an important property of the sufficient statis-
tics. Roughly speaking, it shows that the sufficient statistics of X with respect
to Y cannot be changed by a player that only knows X without changing the
joint distribution with Y .

Lemma 1.1. [28] Let X and Y be random variables, and let K = X ↘ Y .
Let X = f(X) for a randomized function f . If PKY = PKY , then we have
K = K.

This property will be very useful in our application, as it allows the player
holding Y to verify whether the other player really sent him X ↘ Y by doing
a statistical test over many instances of X and Y .

Universal Hashing and Randomness Extraction

The statistical distance of two random variables X and Y over the same
domain V is defined as SD[X, Y ] := 1

2

∑
v∈V |PX(v)− PY (v)|. A function h :

R×X → {0, 1}m is called a 2-universal hash function [12] if for all x0 6= x1 ∈
X , the probability that they are mapped to the same value is at most 2−m;
more precisely, are we have

Pr[h(R, x0) = h(R, x1)] ≤ 2−m

if R is uniform over R. We measure the uncertainty of a random variable X,
given a random variable Y , as the conditional min-entropy, which is defined
as

Hmin(X | Y ) = min
x,y

log
1

PX|Y (x | y)
.

Note that for i.i.d. random variables, the conditional min-entropy converges
to the conditional Shannon entropy, which is defined as

H(X | Y ) =
∑
x,y

PXY (x, y) log
1

PX|Y (x | y)
,

with an error that vanishes exponentially fast. See [31] for explicit bounds for
this.

The following two facts (Lemmas 1.2 and 1.3) are often used in information-
theoretic protocols in cryptography. The first one is called the leftover hash
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lemma by Impagliazzo, Levin, and Luby [33]. It tells us that we can extract
about Hmin(X | Y ) bits from a random variable X that are uniformly distrib-
uted and independent of Y . In other words, an adversary who knows Y will
have almost no knowledge about the extracted value. That is why this process
is also called privacy amplification [8, 6].

Lemma 1.2. Leftover Hash Lemma [33] Let X and Y be random vari-
ables over X and Y, and let m > 0. Let h : S ×X → {0, 1}m be a 2-universal
hash function. If m ≤ Hmin(X|Y )−2 log(1/ε), then for S uniform over S, we
have SD[(h(S, X), S, Y ), (U, S, Y )] ≤ ε, where U is uniform over {0, 1}m and
independent of S and Y .

Often, certain pieces of information are leaked to the adversary during a
protocol. The following fact due to Maurer and Wolf [37] gives us a lower
bound on the remaining min-entropy: Roughly speaking, it states that with
high probability, the min-entropy decreases by at most the logarithm of the
alphabet size of the leaked information.

Lemma 1.3. [37] For all random variables X and Y , and for all ε > 0, we
have Pr[Hmin(X | Y ) ≥ Hmin(XY )− log |Y| − log(1/ε)] ≥ 1− ε.

Basic Reductions for OT

We will discuss two basic reductions for OT. The first implements OT from a
randomized version of it. The protocol is due to Bennett, Brassard, Crépeau,
and Skubiszewska [7].

Protocol 1 (OT from randomized OT) The sender has inputs b0, b1 ∈
{0, 1}, the receiver c ∈ {0, 1}. Furthermore, the sender has the uniformly
random value B0, B1 ∈ {0, 1}, the uniformly random values C ∈ {0, 1}, and
Y = BC .

1. The receiver sends m = c⊕ C.
2. The sender sends r0 = b0 ⊕Bm and r1 = b1 ⊕B1−m

3. The receiver outputs y = rc ⊕ Y .

Intuitively, the protocol is secure because, first of all, the sender only gets the
value c one-time padded by a random value C, and hence will not get any
information about c. Furthermore, the receiver will only receive either B0 or
B1, but not both. Therefore he will only be able to decrypt one one-time pad,
the one of his choice, while he will remain ignorant about the other value.

Note that one way to obtain the values B0 B1, C, and Y is to give random
inputs to an instance of OT. This gives us a method to precompute OT [4].
This can be very useful in our application, as implemented OT may not be
available when the OT is needed.

The following protocol is due to Crépeau and Kilian [18]. It shows that
many instances of OT, all of which are secure for the sender but only one of
them is secure for the receiver, can be combined to achieve a secure imple-
mentation of OT.



1 Unconditionally Secure Multi-party Computation from Weak Primitives 7

Protocol 2 (R-Combiner) The sender has inputs b0, b1 ∈ {0, 1}, the re-
ceiver c ∈ {0, 1}. Furthermore, they have k implementations of OT.

1. Alice chooses the values b01, . . . , b0k−1 uniformly at random and sets b0k :=⊕k−1
i=1 b0i ⊕ b0 and b1i := b0i ⊕ b0 ⊕ b1, for i ∈ [k].

2. Bob chooses the values c1, . . . , ck−1 uniformly at random and sets ck :=⊕k−1
i=1 ci ⊕ c.

3. They execute the k implementations of OT, using b0i, b1i and ci as input
in the i-th execution. Bob receives yi.

4. Bob outputs y :=
⊕k

i=1 yi.

It is easy to verify that the output is correct. If the sender gets the receiver’s
input in k−1 instances, he will not learn c, as it is still one-time padded with
a random value. On the other hand, if all instances of OT are secure for the
sender, then the receiver will not get any information about b0 ⊕ b1, a fact
that implies that the resulting OT is secure for the sender.

1.3 Monotones

It was shown in [47] that the following three quantities are monotones for two
party computation, i.e., cannot increase during the execution of any protocol
based on (noiseless) communication and (lossless) processing (where X and
Y are the random variables summarizing the entire information accessible to
A and B, respectively):

H(Y ↘ X | X) , H(X ↘ Y | Y ) , I(X;Y | X ∧ Y ) .

These monotones can now be used to show the impossibility of certain re-
duction protocols, or at least to derive lower bounds on the efficiency of such
protocols.

Since OT is equivalent to a randomized version OT (see Protocol 1), which
is simply distributed randomness, we can directly apply these monotones: For(
2
1

)
−OT, all three monotones are equal to 1. However, if the players do not

have any distributed randomness to start with, all three monotones have the
value 0 at the beginning. Since they cannot be increased, we get another
proof for the impossibility of OT from scratch! But we can now also easily
conclude that OT cannot be duplicated, i.e., it is impossible to make n + 1
instances of OT out of n instances, or we can derive lower bounds on the
number of instances needed for a certain reduction. For example, to produce
one instance of

(
2
1

)
−OT out of distributed randomness that is distributed

according to PXY , we need at least

max
(

1
H(Y ↘ X | X)

,
1

H(X ↘ Y | Y )
,

1
I(X;Y | X ∧ Y )

)
instances of this randomness.
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1.4 Bit Commitment from Noise

Bit commitment based on common randomness was introduced in [43]. In [45],
the commitment capacity of two correlated random variables is defined. It is
the supremum of all rates (bits per instance) that can be achieved with an
arbitrarily small error. Note that in that model, all bits are committed to and
opened simultaneously and cannot be opened separately. It was proved in [45]
that the commitment capacity of X and Y , where the committer holds X and
the verifier holds Y , is

H(X ↘ Y | Y ) .

The algorithm of [32] is based on a code that has been introduced by
Wyner [49] for the wire-tap channel , but is inefficient. An efficient (and also
simpler) protocol was given in [46]; it only relies on universal hashing [12] and
Lemma 1.2, and works as follows.

Let Alice have Xn = X1, . . . , Xn and Bob have Y n = Y1, . . . , Yn. Assume
that Alice wants to commit to a value d ∈ {0, 1}`. Let h : {0, 1}∗ × Kn →
{0, 1}m and ext : {0, 1}∗ ×Kn → {0, 1}` be 2-universal hash functions.

Protocol 3 Commit to a value d ∈ {0, 1}l.

1. Bob chooses r1 ∈ {0, 1}∗ and sends it to Alice.
2. Alice calculates Kn := (X1 ↘ Y1, . . . , Xn ↘ Yn). She chooses r0 ∈ {0, 1}∗

and sends c := (r0, h(r1,K
n), d⊕ ext(r0,K

n)) to Bob.

Protocol 4 Open the commitment.

1. Alice sends (d, Kn) to Bob.
2. Bob accepts d if (Kn, Y n) is distributed according to PX↘Y,Y and c =

(r0, h(r1,K
n), d⊕ ext(r0,K

n)), but rejects otherwise.

Since Alice has to send the sufficient statistics Kn to Bob, we know by
Lemma 1.1 that she cannot change the value Kn without changing the joint
statistics of Kn with Y n. Therefore, she can only change s = O(

√
n) values

in Kn without being detected. Therefore, Alice can only choose from(
n

s

)
|K|s ≤ (n|K|)s

different values. Let us choose m = s log(n|K|)+log(1/ε). Now, the probability
that among the values Alice can choose from, there exist two values with the
same hash value is at most

2−s log(n|K|)−log(1/ε)(n|K|)s = (n|K|)−sε(n|K|)s = ε .

Therefore, with probability of at least 1 − ε Alice will not be able to change
her commitment, which implies that the commitment is binding. To ensure
that Bob has no information about Alice’s secret, she applies the function ext
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on Kn, where ` ≤ Hmin(Kn | Y n) −m − 3 log(1/ε). Lemma 1.3 implies that
the min-entropy of Bob about Kn after he has received h(r1,K

n) is at least
Hmin(Kn | Y n)−m−log(1/ε) with probability at least 1−ε. Lemma 1.2 states
now that given Bobs information, the extracted string is ε-close to uniform.
Therefore, with a probability of at least 1−2ε, Bob has no information about
d in the commitment phase. Since m = O(

√
n log(n)) is sub-linear in n, and

Hmin(Kn | Y n) converges to nH(X ↘ Y | Y ), it follows that our scheme
achieves the commitment rate H(X ↘ Y | Y ).

Channels.

The same protocol can also be applied to the model where the two players
are connected by a channel: we let the sender give random input, according
to a specified distribution, to the channel, and then apply the above protocol.
Additionally, we have to make sure that the receiver can verify whether the
sender has used the specified input distribution [45]. It turns out that bit
commitment is possible for any non-trivial channel, the same condition as for
OT.

1.5 Oblivious Transfer from Noise

We will describe the algorithm of [19] showing that OT can be achieved from
any non-trivial channel PY |X , which generalizes the results of [17]. A channel
is non-trivial if there exist two inputs x1 and x2 such that PY |X=x1 6= PY |X=x2

holds and there exists a y ∈ Y such that PY |X=x1(y) > 0 and PY |X=x2 > 0
both hold. Furthermore, we require that x1 and x2 are extremal neighbors,
meaning, in particular, that the distributions PY |X=x1 and PY |X=x2 cannot be
produced by any linear combination of other inputs. OT can now be achieved
in several steps. First, the channel is used to implement a binary-symmetric
erasure channel (BSEC). Let (y1, y2) be the most informative pair , i.e., the
values which give the best estimate over the input, given the input is uniform
over x1 and x2.

Protocol 5 (BSEC) The sender has an input r ∈ {0, 1}.
1. The sender sends x1x2 if r = 0, and x2x1 if r = 1 over PY |X .
2. The receiver returns O if he receives y1y2, and 1 if he receives y2y1. Oth-

erwise, ∆.

In this protocol, the sender that correctly chooses the inputs will get no in-
formation about whether the receiver outputs ∆ or not. The receiver will get
some information about the input of the sender even if he receives ∆, however
this information will be smaller than in the case when he receives a value in
{0, 1}. Also note that the channel might make some errors, i.e., the receiver
may get an output 1, even if the sender has sent a value 0.

We can now use this protocol to construct an OT that is secure if the sender
follows the protocol. The protocol makes use of one-way key agreement [20, 1].
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Protocol 6 (Passively Secure OT) The sender has inputs b0, b1 ∈ {0, 1}
and the receiver c ∈ {0, 1}.

1. The sender picks 2n random bits ri and sends them to the receiver using
the BSEC; the receiver gets r′i.

2. The receiver picks and sends two disjoint sets I0 and I1 of the same size
n′, such that ri 6= ∆ for all i ∈ Ic.

3. The sender and the receiver execute twice a one-way key-agreement pro-
tocol, once for the values in I0 and once for the values in I1. The sender
gets two key bits, k0 and k1. The receiver gets kc.

4. The sender sends m0 = b0⊕k0 and m1⊕k1. The receiver outputs mc⊕kc.

The parameter n′ has to be as large as possible, but such that the honest
player can construct one set Ic which does not contain any r′i = ∆ with
high probability. Then, a malicious player does not receive enough values
to construct two such sets, and therefore has some disadvantage against the
honest player in at least one of the two sets. The key-agreement protocol
then ensures that the honest player gets the key, while the dishonest does not
get any information about the key for the string about which he has some
disadvantage.

Now we have to ensure that the sender cannot actively cheat the protocol
by not choosing the input values to the channel as he is supposed to. To
do so, we apply the above protocol k = dn1+εe times on random input, and
use Protocol 2 to combine them to one instance of OT. In order to be able
to cheat in this randomized OT, the sender would have to cheat in every
instance of the k OTs at least once, which means he would have to choose a
different input in at least n1+ε instances BSEC of the total n2+ε instances.
But this would bias the statistical distribution of the outputs of the BSECs
since n1+ε = (

√
n2+ε)1+Θ(1). We let the sender apply a statistical test to

prevent this. Then, we only have to apply Protocol 1 to implement OT from
randomized OT to end up with a secure implementation of OT.

Distributed Randomness.

We will use the simple technique of [46] to show how OT can be reduced to
distributed randomness. A more efficient way can be found in [39].

Let Alice have X1, X2, . . . , Xn and Bob Y1, Y2, . . . , Yn. Alice and Bob sim-
ulate a channel in the following way: For all i, Alice erases the values Xi with a
certain probability, such that all x ∈ X occur with the probability of the least
probable x0. On input value x, Alice sends Bob the index i of the first value
Xi with Xi = x. Bob outputs the value Yi. It can be shown that this channel
satisfies the condition to achieve OT if the distributed randomness satisfies
H(X ↘ Y | Y ) > 0. Clearly, this bound is tight as for H(X ↘ Y | Y ) = 0, we
cannot even achieve bit commitment.
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1.6 Pseudo-Signatures and Broadcast from Noise

It was shown in [40] how to set up a PSS using global broadcast channels,
using the dining-cryptographers protocol [13, 10]. Obtaining a PSS from a
common random source was considered in [26, 27], but only with respect to
three players and one particular probability distribution.

In [28] an implementation of a PSS among three players is presented,
assuming that the players have access to some distributed randomness, that
we will present now. Let the signer have Xn, the intermediate player have
Y n, and the receiver have Zn. These random variables are i.i.d. according to
PXY Z . Furthermore, let us assume that I(X ↘ Y ;Z | Y ) > 0.

Protocol 7 Let v ∈ {0, 1} be the value P1 wants to sign.

1. P1 calculates Ki := Xi ↘ Yi and sends (v,K1+(n/2)v, . . . ,Kn/2+(n/2)v)
to P2.

2. P2 checks whether the received Ki and the corresponding Yi are have
the correct joint distribution PX↘Y,Y . If so, he accepts, calculates Li :=
(Ki, Yi) ↘ Zi, and sends (v, L1+(n/2)v, . . . , Ln/2+(n/2)v) to P3.

3. P3 checks whether the received Li and the corresponding Zi have the correct
joint distribution P(X↘Y,Y )↘Z,Z . If so, he accepts.

First of all, the signed bit from a correct sender P1 is accepted by P2 except
with exponentially small probability. Because of Lemma 1.1, even a malicious
signer has to send the correct values Ki if he wants the intermediate player
to accept. If an honest intermediate player accepts, then only O(

√
n) values

of Kn may be false. Therefore, he can be sure that the receiver accepts his
message. (Note that the receiver has to be somewhat more tolerant about the
errors he accepts.) If the intermediate player tries to transfer 1− v, he needs
to calculate the values Li only using his values Yi. It can now be shown that
he will not be able to do that if I(X ↘ Y ;Z | Y ) > 0.

1.6.1 Broadcast from Pseudo-Signatures

We will now present a protocol for broadcast among the three players P1,
P2, and P3, where P1 is the sender, using the above pseudo-signature scheme
where P1 is the signer. We assume that signatures can be transfered along the
path P1 → P2 → P3. The following protocol is adapted from [27].

Protocol 8 Let v ∈ {0, 1} be the value P1 wants to send.

1. P1 signs v and sends it to P2. He also sends v (unsigned) to P3.
2. P2 receives v′ and checks the signature. If it is correct, he transfers it to

P3 and outputs v′. If the signature is not correct, he sends ⊥ to P3.
3. P3 receives a value v′′ from P2 and u from P1. If the signature of v′′ is

correct, then he outputs v′′. Otherwise, he outputs u and sends u to P2.
4. If P2 has not yet output a value, he outputs what P3 sends to him.
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If P1 is honest, then an honest P2 will identify the signature as correct and
output v. P2 can now correctly transfer v and its signature to P3, who will be
able to verify the signature and output v. However, he cannot send any other
value to P3 that will be accepted, since he is not able to forge signatures.
Hence, an honest P3 will also output v, and the protocol is correct if the
sender is honest. Let now P2 and P3 be honest. If P2 has received a correctly
signed value v′, then he will output v′, but he will also be able to transfer
the signature to P3 who will also output v′. If P2 did not receive a correctly
signed value v′, then he will finally output what P3 sent him, which is the
same value as P3 outputs. Hence, the protocol is also correct if the sender is
malicious.

Using our PSS, we can achieve broadcast among three players having X,
Y , and Z, where the sender holds X, if

I(X ↘ Y ;Z | Y ) + I(X ↘ Z;Y | Z) > 0 .

It was shown in [28] that this bound is tight, i.e., no such protocol can exist
if I(X ↘ Y ;Z | Y ) + I(X ↘ Z;Y | Z) = 0.

1.7 More Realistic Models

The results of the previous section seem very promising: almost any noise can
be used to achieve tasks which would otherwise be impossible. Unfortunately,
the assumptions used are not as weak as one might think.

Let us for example look at the binary noisy channel. This is a model that
is often used in communication, because there, it is a very weak primitive.
It is only required that the receiver obtains a bit that is enough correlated
with the bit the sender has sent. However, in cryptography this condition
does not suffice, because the receiver (or the sender) must not receive too
much information. This means that the error has to be exactly as specified,
and the sender or receiver must not get any information about whether an
error occurred or not. It seems to be very hard to come up with a physical
implementations that satisfies these specifications.

If it is possible to physically implement a primitive such as binary noisy
channel, it will probably not be perfect, but only approximate the binary
noisy channel with a small error that cannot be chosen arbitrarily small, but is
constant. But then, the protocols we have seen will give us an implementation
of OT with a constant error which, depending on the application, might not be
sufficiently small. One possibility to reduce the error is to amplify the quality
of our implementation. For oblivious transfer, it was shown in [22] that a weak
version of oblivious transfer can be amplified for certain parameters. These
results were corrected and improved in [48].

To get a more realistic model of a physical noisy channel, the notion of so-
called unfair noisy channels was introduced in [22]. Such a channel is binary
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symmetric with error probability of δ if both players are honest. However,
if one of the player cheats, he may reduce the error to γ < δ and use the
additional knowledge to his advantage. It has been proved in [22] and [21]
that for a certain range, oblivious transfer is still possible.
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