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Abstract

We report on the progress made towards finding non-local behaviour in
the bipartite reduced states of a three-partite quantum state. In particu-
lar we investigate the W and Aharonov state, which have symmetric bi-
partite reduced states. To this end we present computational methods.
We also show that a maximally non-local bipartite quantum behaviour
can be constructed from any Kochen-Specker set, thus showing a very
close link between contextuality and non-locality.
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Chapter 1

Introduction

“I think I can safely say that nobody
understands quantum mechanics.”

— Richard Feynman, The
Character of Physical Law

Even though Quantum Theory may be seen as an extension of classical prob-
ability theory [16, 25, 41], its place as a physical theory does not fail to chal-
lenge our perception of reality.

One aspect of Quantum Theory, in contrast to classical theories, is the insep-
arability of states in composite systems, a property known as entanglement.

Physical systems whose joint state space may be described as a quantum me-
chanical composite of spaces may surprisingly be physically separated even
if the joint quantum mechanical state is not separable, but is entangled. This
leads to peculiar situations where physical systems are separable, whereas
their quantum mechanical descriptions are not.

Furthermore, it is possible to conduct local measurements on such phys-
ically separated systems so that the quantum mechanically expected out-
comes are correlated but not predictable. This was eloquently noted by
Einstein, Podolski and Rosen (EPR) in their 1935 paper “Can Quantum-
Mechanical Description of Physical Reality Be Considered Complete?” [15].
They raise the question whether a more complete description of physical
reality addressing this peculiarity may be found.

Responding to EPR, in 1964, John Bell [8] showed that no “hidden variable”
interpretation of Quantum Mechanics, a class of extensions to the theory,
is compatible with quantum mechanical predictions . He showed this by
deriving inequalities that must be satisfied for all behaviours that are sepa-
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1. Introduction

rable given some shared hidden variables and demonstrating the existence
of quantum mechanical behaviours that lead to a violation of these inequal-
ities. Such behaviours are called non-local.

We are left with the situation where there exist separable physical systems
with non-separable quantum mechanical descriptions and also non-separable
(non-local) quantum mechanical behaviours.

In this thesis we investigate which quantum states admit non-local behaviour.
In particular we are interested in bipartite quantum states that are the marginal
of three-partite states. We call this three-partite marginal quantum non-locality.
To this end, we describe various computational methods for studying be-
haviours. We also prove certain characteristics of the space of local be-
haviours and show a close link between contextuality and non-locality.

1.1 Overview

The thesis is structured as follows. We begin by stating fundamental results
from Linear Algebra, the study of convex sets and the basic concepts of
Quantum Mechanics.

We proceed, in Chapter 3, by introducing probabilistic behaviours, proper-
ties of such behaviours and a hierarchy. Here we also prove certain charac-
teristics of local behaviours and the space they are contained in.

Chapter 4 discuses the non-locality of Quantum Mechanics. We review the
results by Werner. Further, we show a close link between contextuality and
non-locality by proving that a bipartite quantum behaviour which maxi-
mally violates a Bell inequality can be constructed from any Kochen-Specker
set.

In order to investigate non-local behaviours we present in Chapter 5 vari-
ous computational methods used previously for similar studies and in the
context of Polyhedral Computation.

In Chapter 6, we describe the setting of three-partite marginal quantum non-
locality and report on the progress made towards finding such states and
behaviours.

We conclude with a discussion of the topics addressed and briefly mention
possible directions for future inquiry.
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Chapter 2

Preliminaries

2.1 Linear Algebra

In the following, we briefly state fundamental concepts from standard Linear
Algebra that will be used to discuss the main topics. For a more rigorous and
complete treatment see Artin [3], Connell [12] or the introductory sections
on Linear Algebra in Nielsen and Chuang [36].

2.1.1 Vector space

A vector space V over a field F is a set together with addition and scalar
multiplication, satisfying certain condition.

We will mostly use vector spaces over real numbers, the set of all n-vectors,
which we will denote as Rn. The zero vector (0, 0, . . . , 0) ∈ Rn will be
denoted as 0.

Let (v1, v2, . . . , vn) be an ordered set of elements of V. A linear combination
of (v1, v2, . . . , vn) is any vector

w = c1 · v1 + c2 · v2 + . . . + cn · vn

where ci ∈ F.

The set of all vectors w which are linear combinations of (v1, v2, . . . , vn) form
a subspace W of V, called the subspace spanned by the set.

A set of vectors (v1, v2, . . . , vn) is linearly independent if and only if

c1 · v1 + c2 · v2 + . . . + cn · vn = 0

implies that all coefficients ci = 0. Conversely, a set of vectors is called
linearly dependent if and only if there exists a non-zero coefficient ci.

3



2. Preliminaries

If the space spanned by a set of linear independent vectors B = (b1, b2, . . . , bk)
is V, then B is called a basis of V.

The dimension of V is the number of vectors in a basis B of V.

2.1.2 System of linear equations

A system of linear equations may be written in the form Ax = b.

A system of linear equations is homogeneous if b is the zero vector Ax = 0.

The space of solution vectors x is the null space of A, denoted as null(A).
The dimension of the null space is called the nullity of A.

The rank of A is the number of linearly independent rows.

By the rank-nullity theorem we have the following relation

rank A + nullity A = dim V.

There is a close relationship between the solutions to a non-homogeneous
and homogeneous system. If p is a solution to the homogeneous system
Ap = b, then the set of solutions to Ax = b is {p + v | v ∈ null(A)}. Note
that this solution set is in general not a vector space, it is an affine subspace
of V.

2.1.3 Hyperplane

A hyperplane (z, z0) of an n dimensional space is a n− 1 dimensional sub-
space defined by a single linear equality

z>x = z0. (2.1)

In general the subspace is affine. If z0 = 0 it is also a vector subspace.

This affine space separates the space into two half-spaces that are given by
the inequalities

z>x < z0

and
z>x > z0.

Note that linear equalities (and thus hyperplanes) may be arbitrary scaled.
For example

cz>x = cz0

defines the same subspace as (2.1) for any scalar c.
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2.2. Convex Sets and Polytopes

2.2 Convex Sets and Polytopes

Many concepts discussed in the following chapters may be elegantly de-
scribed by convex sets and polytopes. In this section we provide a brief
overview of definitions and important results from the study of such ob-
jects. For a more complete treatment we refer the reader to Ziegler [57] and
Lauritzen [32], from where we take the material presented here.

2.2.1 Convex set

Definition 2.1 (Convexity) A set K ⊂ Rd is convex if and only if a, b ∈ K and
0 ≤ λ ≤ 1 imply λa + (1− λ)b ∈ K.

Definition 2.2 (Convex hull) Let v1, v2, . . . , vn ∈ Rd be a finite set of vectors,
then we define the convex hull

conv (v1, v2, . . . , vn) :=
{λ1v1 + λ2v2 + · · ·+ λnvn | λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1} .

It follows straightforwardly that the convex hull is a convex set.

2.2.2 Polytopes

Definition 2.3 (Polytopes) A polytope is the convex hull of a finite set of points
in Rd.

From the Minowsky-Weyl Theorem an equivalent way of describing poly-
topes follows:

Theorem 2.4 (Halfspace representation of polytopes) P is a polytope if and
only if there exists a system of finitely many linear inequalities so that

P =
{

x ∈ Rd | Ax ≤ b
}

.

For a proof the reader is referred to Ref. [57, Theorem 1.1].

This allows us to represent polytopes as the intersection of a finite number
of linear inequalities; we will call this representation halfspace representation.

Proposition 2.5 (Unique closest point) Let P ⊂ Rd be a polytope and z ∈ Rd.
Then there exists an unique point r ∈ P such that

‖z− r‖ = min
{
‖z− r′‖ | r′ ∈ P

}
.

The claim follows from Ref. [32, Corollary 3.0.2].
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2. Preliminaries

2.3 Quantum Mechanics

For the sake of completeness, we state the postulates of Quantum Mechan-
ics and discuss key concept such as density operators, entanglement and
generalized measurements (POVM).

The following section follows the lines of Nielsen and Chuang [36] and Ren-
ner [46].

2.3.1 The postulates of Quantum Mechanics

States Associate to any isolated system is a Hilbert space H known as the
state space. The system is completely described by a normalized vector
ϕ ∈ H, the state vector.

Composition For two systems with state space HA and HB, the state space
of the product system is HA ⊗ HB. Furthermore, if the individual
systems are in states ϕA ∈ HA and ϕB ∈ HB, then the joint state is

ϕA ⊗ ϕb ∈ HA ⊗HB

.

Evolution The evolution of an isolated system with state space H is de-
scribed by a unitary transformation. That is, a state ϕ ∈ H is related
to the post-evolution state ϕ′ ∈ H by an unitary operator U:

ϕ′ = Uϕ

.

Measurements A (projective) measurement is described by an observable M,
a Hermitian operator on the state space of the system being observed.
Each eigenvalue x of M corresponds to a possible measurement out-
come. If the system is in state ϕ ∈ H, then the probability of observing
outcome x is given by

p(x) = tr (Px|ϕ〉〈ϕ|)

where Px denotes the projector onto the eigenspace belonging to the
eigenvalue x. The state ϕ′ of the system after observing x is

ϕ′ =

√
1

p(x)
Px ϕ.
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2.3. Quantum Mechanics

2.3.2 Density operators

Often it is not enough to consider isolated quantum systems. We use the
notion of density operators which is able to represent the state of a system
that is, in general, not isolated.

Definition 2.6 (Density operator) A density operator ρ on a Hilbert space H
is a normalized positive operator on H, i.e. ρ ≥ 0 and tr(ρ) = 1. The set of density
operators on H is denoted by S(H). A density operator is said to be pure if it has
the form ρ = |ϕ〉〈ϕ|. A density operator that is not pure is called mixed. If H is
d-dimensional and ρ has the form ρ = 1

d I then it is called fully mixed.

It follows from the spectral decomposition theorem that any density opera-
tor can be written in the form

ρ = ∑
x

λx|ex〉〈ex|

where λx are the eigenvalue of ρ and ex the corresponding eigenvectors.

The postulates of Quantum Mechanics may be stated in the language of
density operators:

State The state of a system is represented as a density operator on a state
space H. For an isolated system whose state is ϕ ∈ H the correspond-
ing density operator is defined by ρ = |ϕ〉〈ϕ|.

Composition The state of a composite system with state spaces HA and HB
is represented as density operator on HA ⊗HB. Furthermore, if the
individual systems are in states ρA ∈ S(HA) and ρB ∈ S(HB), then
the joint state is ρA ⊗ ρB ∈ S(HA ⊗HB).

Evolution Any isolated evolution of a system corresponds to a unitary on
the state space H. That is, a state ρ ∈ S(H) is related to the post-
evolution state ρ′ ∈ S(H) by and unitary operator U:

ρ′ = UρU†

.

Measurements A (projective) measurement is described by an observable
M, a Hermitian operator on the state space of the system being ob-
served. Each eigenvalue x of M corresponds to a possible measure-
ment outcome. If the system is in state ρ ∈ S(H), then the probability
of observing outcome x is given by

p(x) = tr (Pxρ)

7



2. Preliminaries

where Px denotes the projector onto the eigenspace belonging to the
eigenvalue x. The state ρ′ of the system after observing x is

ρ′ =
1

p(x)
PxρPx.

2.3.3 Partial trace and purification

Let HA ⊗ HB be a composite quantum system which is in a state ρAB =
|Ψ〉〈Ψ| for some |Ψ〉 ∈ HA ⊗ HB. Following from the properties of the
partial trace and the postulates, the reduced state ρA = trB(ρAB) fully charac-
terizes all observable properties of the subsystem HA.

Note that the reduced state ρA of a pure joint state ρAB is not necessarily
pure.

Conversely, any mixed density operator ρA can be seen as part of a pure
state on a larger system, there exists a pure density operator ρAB on a joint
system HA ⊗HB such that

ρA = trB ρAB.

Such a state ρAB is called a purification of ρA.

2.3.4 Entanglement

The following definition of separability and entanglement of density opera-
tors is due to Werner [56] (then called classically correlated and EPR corre-
lated).

Definition 2.7 (Separability) A density operator ρ ∈ S (H1 ⊗H2 ⊗ ...⊗Hn)
is called separable if it can be written as a convex combination of product states

ρ = ∑
i

piρ
i
1 ⊗ ρi

2 ⊗ · · · ⊗ ρi
n

where ρi
j ∈ S

(
Hj
)
.

Definition 2.8 (Entanglement) A density operator ρ is called entangled if it is
not separable.

The positive partial transpose (PPT) criterion is a necessary condition for the
separability of a density operator [38].

For systems of dimension 2× 2 and 2× 3 it has been shown that the PPT
criterion is not only a necessary but also a sufficient condition for separa-
bility [27]. Thus it is a complete characterization of entanglement in those
cases.
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2.3. Quantum Mechanics

In general, it is hard to decide whether a given state is separable or en-
tangled, this is called the separability problem or entanglement detection
problem [23].

For an extensive review of topics related to quantum entanglement the
reader is referred to Horodeckis [29].

2.3.5 Generalized measurements

In the most general form measurements on quantum systems may be ex-
pressed as Positive Operator-Valued Measure (POVM).

Let {Fx} be a set of positive operators such that ∑x Fx = I. The operators Fx
are known as POVM elements. The complete set {Fx} is known as POVM.

The probability of observing outcome x is given by

p(x) = tr(Fxρ).

Note that projective measurements, as described above, are a special case of
POVM measurements.

9





Chapter 3

Probabilistic Behaviours

3.1 Probabilistic Behaviours

Generally, the behaviour of a k-partite input-output system, where the par-
ties choose an input ai and receive and output xi, may be described as a
probability distribution

P (x1, x2, . . . , xk | a1, a2, . . . , ak)

giving the probability of observing outputs x1, . . . , xk for inputs a1, . . . , ak.

In the following, we will assume that the inputs and outputs for all parties
take values from a finite alphabet ai ∈ {0, . . . , n− 1} and xi ∈ {0, . . . , m− 1},
we will refer to such behaviours as (n, m)-behaviours.

As we will be mostly considering the bipartite case (k = 2), we will use the
notation: x = x1, y = x2, a = a1 and b = a2, corresponding to Alice and Bob.
The probability distribution describing the bipartite behaviour is then

P (x, y | a, b) .

When considering three-partite systems, we identify z = x3 and c = a3,
calling the third party Charlie.

A probabilistic behaviour P (x1, x2, . . . , xk | a1, a2, . . . , ak) may be written as a
vector p ∈ Rnk ·mk

with elements

px1,...,xk ,a1,...,ak = P (x1, x2, . . . , xk | a1, a2, . . . , ak) . (3.1)

However, not every p ∈ Rnk ·mk
corresponds to a behaviour.

A vector p is a probabilistic behaviour if and only if it satisfies the normaliza-
tion conditions

∑
x1,...,xk

px1,...,xk ,a1,...,ak = 1 (3.2)

11



3. Probabilistic Behaviours

for all a1, . . . , ak and the non-negativity conditions

px1,...,xk ,a1,...,ak ≥ 0 (3.3)

for all x1, . . . , xk, a1, . . . , ak.

By stating these conditions explicitly we gain insight into the space of be-
haviours. The normalization conditions may be seen as a non-homogeneous
system of nk linearly independent equalities. The space of normalized vec-
tors is an affine subspace of Rnk ·mk

with dimension nk ·mk − nk.

The non-negativity conditions, on the other hand, define half-spaces. The
intersection of these half-spaces with the normalized vectors is a convex
polytope, i.e. the set of probabilistic behaviours forms a convex polytope.

When appropriate, we will represent a bipartite (n, m)-behaviour as a (nm×
nm)-matrix

P (0, 0 | 0, 0) P (0, 1 | 0, 0) · · · P (0, m− 1 | 0, n− 1)

P (1, 0 | 0, 0) P (1, 1 | 0, 0) · · ·
...

...
...

. . .
...

P (m− 1, 0 | n− 1, 0) · · · · · · P (m− 1, m− 1 | n− 1, n− 1)

 .

3.2 Non-Signaling

Definition 3.1 (Non-signaling) A k-partite (n, m)-behaviour is non-signaling,
when the marginal distribution for every subset of parties {i1, i2, . . . , il} only de-
pends on its corresponding inputs

P (xi1 , xi2 , . . . , xil | a1, a2, . . . , ak) = P (xi1 , xi2 , . . . , xil | ai1 , ai2 , . . . , ail ) . (3.4)

This corresponds to behaviours where any subset of the k parties are not able
to gain information on the input of other parties. In other words, behaviours
that can not be used to communicate or signal, thus non-signaling.

As shown in Ref. [6] all conditions of form (3.4) follow from the conditions

∑
xi

P (x1, . . . , xi, . . . , xk | a1, . . . , ai, . . . , ak)

= ∑
xi

P
(

x1, . . . , xi, . . . , xk | a1, . . . , a′i, . . . , ak
)

(3.5)

for all i, pairs (ai, a′i), x1, . . . , xi−1, xi+1, . . . , xk and a1, . . . , ai−1, ai+1, . . . , ak.

The non-signaling conditions may be seen as a homogeneous system of
k(n

2)m
k−1nk−1 linear equalities Cns p = 0. We will refer to the solution space

12



3.3. Locality

of this system, i.e. null(Cns), as the non-signaling vector subspace Vns. A basis
of this space will be called Bns.

Note, however, that the non-signaling vector subspace is not the space of
non-signaling behaviours as the vectors may not satisfy the normalization
or non-negativity conditions. The space of all non-signaling probabilistic
behaviours is in fact a polytope [34] which is called the non-signaling polytope
Pns.

3.3 Locality

An important class of behaviours we will study are the local behaviours.
These are behaviours where the joint behaviour of the parties may be de-
composed into single party behaviours given some shared random value,
often called hidden variables.

Definition 3.2 (Local behaviour) A bipartite behaviour is local if and only if it
can be decomposed as

P (x, y | a, b) =
∫

λ
P (x | a, λ) P (y | b, λ) P(λ)dλ (3.6)

for some range of values λ ∈ Λ.

The term locality comes from the physical interpretation of such behaviours
for (physically) separable parties. Mathematically it is a separability crite-
rion.

Observe that all local behaviours are non-signaling as the marginal distri-
butions for both parties only depend on their corresponding inputs. The
converse, however, does not hold.

3.3.1 Local polytope

We will only consider bipartite behaviours with finite input and output
alphabet. The space of such local behaviours may be characterized as a
polytope. This is a well known result and has been stated by various au-
thors [18,39,55]. Nevertheless, given the importance of this result, we give a
proof of this statement.

First, we define a special class of local behaviours.

Definition 3.3 (Local deterministic behaviours) A local deterministic behaviour
(ldb) Pldb (x, y | a, b) is a (n, m)-behaviour with

Pldb (x, y | a, b) = Ps(x | a)Ps′(y | b) (3.7)

13



3. Probabilistic Behaviours

where Ps(x | a) and Ps′(y | b) are deterministic probability distributions that may
be written as

Ps(x | a) = δsa,x Ps′(y | b) = δs′b,y

for some strings s, s′ ∈ {0, . . . , m− 1}n, with δi,j being the Kronecker delta func-
tion.

The string s, s′ are the local deterministic strategies, functions s, s′ : {0, . . . , n−
1} → {0, . . . , m− 1} assigning a deterministic outcome for every input.

As the number of such strategies is finite for fixed n and m, the number of
different local deterministic behaviours is m2n.

We will label the local deterministic behaviours either with arbitrary indices,
e.g. Pldb

i (x, y | a, b), or alternatively by the defining local deterministic strate-
gies, e.g. Pldb

s,s′ (x, y | a, b).

Proposition 3.4 A local bipartite behaviour with finite input and output alphabet
(e.g. a (n, m)-behaviour) can be decomposed as a convex combination of the local
deterministic behaviours

P (x, y | a, b) = ∑
i

Pldb
i (x, y | a, b) ci (3.8)

where ci are the coefficients of a convex combination (ci ≥ 0 and ∑i ci = 1).

Proof Consider the local behaviour

P (x, y | a, b) =
∫

λ
P (x | a, λ) P (y | b, λ) P(λ)dλ (3.9)

with finite input and output alphabet. Observe that any finite distribution
P (x | a, λ) may be written as a convex combination of deterministic proba-
bility distributions

P (x | a, λ) = ∑
s

Ps(x|a)αλ
s (3.10)

where the coefficients αλ
s of the convex combination depend on λ.

By replacing terms, we get

P (x, y | a, b) =
∫

λ

(
∑

s
Ps(x|a)αλ

s

)(
∑
s′

Ps′(y|b)βλ
s′

)
P(λ)dλ

= ∑
s,s′

Ps(x|a)Ps′(y|b)
∫

λ
αλ

s βλ
s′P(λ)dλ.

We set cs,s′ =
∫

λ αλ
s βλ

s′P(λ)dλ and observe that Ps(x|a)Ps′(y|b) correspond to
the local deterministic behaviours, arriving at

P (x, y | a, b) = ∑
s,s′

Pldb
s,s′ (x, y | a, b) cs,s′ .
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3.3. Locality

It follows from the fact that P(λ) is a probability distribution that cs,s′ are
indeed coefficients of a convex combination, thus proving the claim. �

From Proposition 3.4 and the fact that there are a finite number of local
deterministic behaviours we have that the set of local (n, m)-behaviours is a
polytope with the local deterministic behaviours as extremal points.

Definition 3.5 (Local polytope) The space of local (n, m)-behaviours is a poly-
tope with the local deterministic behaviours as extremal points. This polytope is
called the local polytope P local

n,m . When appropriate we simply write P local.

Diameter of local polytope

We are able to state the diameter of the local polytope, i.e. the maximal
distance between any two points in the polytope.

Proposition 3.6 (Diameter of local polytope) The maximal (euclidean) distance
between any two points in the local polytope is

max
p,p′∈P local

(
‖p− p′‖

)
=
√

2n.

Proof Observe that the maximal euclidean distance between any two prob-
abilistic behaviours is attained when the behaviours are deterministic and
the supports are non-overlapping. Let p an p′ be two such behaviours. As
(p− p′) only contains non-zero elements with value ±1 and there are exactly
n2 values 1 and n2 values −1 (for every possible input pair). We have

‖p− p′‖2 = (p− p′)>(p− p′) = 2n2.

Now to show that there exist deterministic p, p′ ∈ P local with non-overlapping
support. Consider the local deterministic behaviours p = pldb

s,s′ and p′ = pldb
s̄,s′

where s̄ is the string with sa = 1 ⇔ s̄a = 0. As can be easily verified p and
p′ have non-overlapping support and thus maximal distance between them,
proving the claim. �

3.3.2 Bell inequalities

There exist linear inequalities where all local behaviours are on one side
of the hyperplane defined by the inequality. We call such inequalities Bell
inequalities.

Definition 3.7 (Bell inequality) A hyperplane (z, z0) is called a Bell inequality
if and only if

z>p− z0 ≤ 0 for all p ∈ P local.
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3. Probabilistic Behaviours

Note that there exists trivial Bell inequalities which do not separate the space
of behaviours we are interested in. We define a special class of Bell inequali-
ties which are of greater interest.

Definition 3.8 (Non-trivial Bell inequality) A Bell inequality is non-trivial if
and only if there exists a point pns ∈ Pns so that

z>pns − z0 > 0.

The number of Bell inequalities is not finite. However, from the halfspace
representation of polytopes we have that there exists a finite set of Bell in-
equalities that fully define the polytope. A minimal set of such inequalities
corresponds to the faces of the polytope.

3.3.3 Multipartite non-locality

Definition 3.2 of local behaviours can be straightforwardly generalized for
k-partite behaviours. The space of such behaviours is also a polytope with
diameter

√
2nk/2 which can be seen by generalizing propositions 3.4 and 3.6.

However, as noted by Svetlichny [51], there exist three-partite behaviours
that are non-local, i.e. can not be decomposed as

P (x, y, z | a, b, c) =
∫

λ
P (x | a, λ) P (y | b, λ) P (z | c, λ) P(λ)dλ (3.11)

but may be written as

P (x, y, z | a, b, c) =q1

∫
λ

P (x, y | a, b, λ) P (z | c, λ) P(λ)dλ

+q2

∫
µ

P (x, z | a, c, µ) P (y | b, µ) P(µ)dµ

+q3

∫
ν

P (y, z | b, c, ν) P (x | a, ν) P(ν)dν (3.12)

where q1, q2, q3 are coefficients of a convex combination.

Such behaviours are not genuinely three-partite non-local as they may be de-
composed into bipartite non-local behaviours.

Svetlichny derived an inequality which holds for all behaviours of form
(3.12) and showed that there are quantum mechanical behaviours that vi-
olate this inequality. Showing that quantum behaviours can be genuinely
three-partite non-local.

The space of non-signaling behaviours of form (3.12) for finite input and
output alphabet can be shown to be a polytope with extremal points being
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3.4. Quantum Behaviour

combinations of points in the two-partite non-signaling polytope and one-
partite local deterministic behaviours.

The general case of genuine k-partite non-locality has been studied [7] and
quantum behaviours have been shown to be genuinely k-partite non-local
[4].

3.4 Quantum Behaviour

Definition 3.9 (Quantum behaviour) We call a behaviour quantum, if the be-
haviour can be written as

P (x1, x2, . . . , xk | a1, a2, . . . , ak) = tr
(

Fa1
x1
⊗ · · · ⊗ Fak

xk ρ
)

where ρ is a quantum state and {Fak
xj }xj are sets of POVM operators.

The space of all possible quantum behaviours is CQ. The space of all quantum
behaviours using the state ρ is CQ

ρ .

In the following we will, if not otherwise noted, restrict ourselves to projec-
tive measurements which represent a special case of POVM measurements
(see Section 2.3.5).

It follows from the separability of the measurement operators and the par-
tial trace that all quantum behaviours are non-signaling. However, as first
shown by Bell [8], not all quantum behaviours are local.

3.5 Hierarchy of Behaviour

We have following hierarchy of bipartite behaviours:

P local ( CQ ⊆ Pns ( Vns ( Rn2·m2
. (3.13)

Note that for (2, 2)-behaviours we have strict inclusion of CQ in Pns (this
is known as Tsirelson’s bound [54]). However, it is unclear if there is strict
inclusion in general.

Considering the non-signaling vector space Vns may seem unintuitive and
unnecessary, but as we shall see, it will be useful for studying computational
methods.
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Chapter 4

Quantum Non-Locality

4.1 Quantum States Admitting Non-Local Behaviour

It is clear that the behaviours of separable states are local, i.e. do not admit
non-local behaviour. However, the converse, that all non-separable (entan-
gled) states admit non-local behaviour, is not true.

For pure states, it has been shown by Gisin [20] and Gisin and Peres [21] that
all bipartite entangled pure states admit non-local behaviour. Furthermore,
Popescu and Rohrlich were able to show that all multipartite entangled pure
states admit non-local behaviour [44].

The situation for mixed states, however, is more complicated. There exists
entangled mixed states that do not admit non-local behaviour. A general
classification whether a state admits non-local behaviour is unknown. In
fact, deciding whether a state ρ admits non-local behaviour is a central topic
we address in Chapter 6.

In the following we briefly discuss an important result regarding non-locality
of mixed states by Werner.

4.1.1 Werner states

Werner [56] showed that for a certain class of bipartite entangled mixed
states any projective measurements always give a local behaviour, by con-
structing a local hidden variable model for any set of measurements.

The generalized class of such states [5] is given by an operator on a compos-
ite of two d dimensional spaces Hd ⊗Hd

ρ = α
2Panti

d(d− 1)
+ (1− α)

I
d2 (4.1)

where I is the identity, Panti =
I−∑i,j |ij〉〈ji|

2 and some parameter α.
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4. Quantum Non-Locality

For α > 1
1+d the state ρ is entangled.

The states for which Werner constructed a local model have α = d−1
d .

In the case d = 2 the states are mixtures of the singlet |ψ−〉 = 1√
2
(|01〉 − |10〉)

and the fully mixed state

ρ = α|ψ−〉〈ψ−|+ (1− α)
I
4

.

For d = 2 it is also known that states with α > 1/
√

2 violate the CHSH
inequality [28, 38].

Barrett [5] was able to extend the local hidden variable model to generalized
measurement (POVM) for

α =
1

d + 1
(d− 1)d−1d−d(3d− 1)

which for d = 2 evaluates to α ≈ 0.416.

4.1.2 Hidden non-locality

Even though bipartite entangled states may not admit non-local behaviour,
Popescu [42] discovered that certain Werner states allow quantum telepor-
tation, a process where a quantum state at an input system is obtained at
a remote output system, while the two systems may only use classical com-
munication and a pre-shared quantum state.

Extending this result, it was shown possible to achieve non-local behaviour
with Werner states (of dimension ≥ 5) by applying sequential measurements
[43].

Peres [37] showed that if not only a single copy of a state is allowed, but
multiple copies are shared, then non-local behaviour can be achieved from
a larger set of states by sequential measurements.

These results are not in contradiction to Werner’s result. The relation be-
tween local hidden variable models and sequential measurements has been
studied by Zukowski et al. [58] and Teufel et al. [53].

The hypothesis that all entangled quantum states can show non-local be-
haviour for sequential measurements seems natural and has been explicitly
raised by Barrett [5, Hypothesis 2]. However, the hypothesis remains un-
known.
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4.2. From Contextuality to Non-locality

4.2 From Contextuality to Non-locality

In 1968, Kochen and Specker [31] showed that any hidden variable model,
which is compatible with quantum mechanics must be contextual, i.e. de-
pendent of the measurement arrangement.

The link between non-locality and contextuality as shown by Bell [8] is very
close [11, 26]. Proofs of non-locality based on the results of Greenberger,
Horne and Zeilinger (GHZ) [22] can be made the basis for a Kochen-Specker
theorem [35, 50].

More recently, non-locality and contextuality have been given a unified treat-
ment using algebraic structures from topology [1] and generalizations of
Bell inequalities are shown to be violated by contextual and non-local be-
haviours [2].

We show that every Kochen-Specker set can be used to construct a non-local
quantum behaviour that maximally violates a Bell inequality. This is done by
using a result by Renner and Wolf [47], which closely links Kochen-Specker
sets to pseudo-telepathic games (PT games). We complete the chain by con-
structing Bell inequalities that are maximally violated by PT games, i.e. the
behaviour reaches the algebraic maximum violation for all behaviours.

4.2.1 Deriving Bell inequalities

The method we use to derive the Bell inequalities is due to Hardy [24] and
has more recently been used and extended in Abramsky and Hardy [2].

Suppose we have propositional formulas ϕ1, . . . , ϕN and we can assign a
probability pi to each ϕi.

Now let P be the probability of Φ :=
∧

i ϕi. We can calculate:

1− P = Prob(¬Φ) =Prob(
∨

i

¬ϕi) ≤∑
i

Prob(¬ϕi)

=∑
i
(1− pi) = N −∑

i
pi

By rearranging we get ∑i pi ≤ N − 1 + P.

Now if the formulas ϕi are jointly contradictory, i.e. Φ is unsatisfiable, then
P = 0 and we obtain the inequality

∑
i

pi ≤ N − 1. (4.2)

In particular we consider formulas where the boolean variables appearing
in ϕi correspond to empirically testable quantities.
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4. Quantum Non-Locality

For example, the boolean variables in ϕi might be defined for a bipartite
behaviour with inputs a, b ∈ {0, . . . , n− 1} and outputs x, y ∈ {0, . . . , m− 1}
as

αx,a :=

{
true if input a yields output x
false otherwise

(4.3)

and

βy,b :=

{
true if input b yields output y
false otherwise

. (4.4)

The probabilistic behaviour rising from such an input-output system is P(x, y |
a, b), from which the probabilities pi, for certain formulas ϕi, may be com-
puted.

Observe that for local deterministic behaviours (see Section 3.3.1), the boolean
variables are defined by the local deterministic strategies s, s′ ∈ {0, . . . , m−
1}n

αx,a = δsa,x βy,b = δs′b,y

with δi,j being the Kronecker delta function.

Then, for formulas ϕi, . . . , ϕN that are jointly contradictory at least one of the
pi must be zero and any inequality of form (4.2) holds for all local determin-
istic behaviours. It follows from convexity that any local behaviour satisfies
inequalities of form (4.2) and such inequalities are indeed Bell inequalities.

However, there exist probabilistic behaviours and in particular quantum be-
haviours that violate such inequalities (see Ref. [2] for an illustrated exam-
ple). This may be explained by the inexistence of a simultaneous global
assignment of probabilities to all boolean variables. Making it impossible
to assign a probability to Φ, thus invalidating our derivation of the Bell
inequality in such a case.

4.2.2 Kochen-Specker sets and pseudo-telepathic games

Here we restate the definitions and main results from Ref. [47], while omit-
ting the proofs and detailed constructions.

Definition 4.1 (Kochen-Specker set) A Kochen-Specker set (KS set for short)
in H = Cd is a set S ⊆ H of unit vectors such that there exists no function
f : S→ {0, 1} with the property that if b ⊆ S is an orthonormal basis of H, then

∑
u∈b

f (u) = 1

holds.
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4.2. From Contextuality to Non-locality

Definition 4.2 (Pseudo-telepathy game) Let |Ψ〉 ∈ H1 ⊗H2 be a pure state.
A pseudo-telepathy game with respect to |Ψ〉 (|Ψ〉-PT game for short) is a pair
(B1, B2), where Bi is a set of orthonormal bases of Hi, such that the following holds.
Let g be the function defined on B1 × B2 such that g(b1, b2) is the set of pairs
(u1, u2) ∈ b1 × b2 satisfying

〈Ψ|u1, u2〉 6= 0.

Then we must have that, for every pair of functions (s1, s2), where si is defined on
Bi and si(bi) ∈ bi holds for all bi ∈ Bi, there must exist particular bases b1 ∈ B1
and b2 ∈ B2 such that

(s1(b1), s2(b2)) 6∈ g(b1, b2). (4.5)

It follows an abridged version of Theorem 3 from Ref. [47].

Theorem 4.3 (PT game from KS set) Let S ⊆ H = Cd be a KS set, then there
exists a |Ψ〉-PT game (B1, B2) that can be constructed from S. Where

|Ψ〉 = 1√
n
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉+ · · ·+ |d− 1〉 ⊗ |d− 1〉) ∈ Cd ⊗Cd.

4.2.3 Pseudo-telepathic games and non-locality

We label the inputs and outputs of the behaviour with x, z and a, c to avoid
a clash in variables.

Theorem 4.4 (Non-locality from PT game) Let (B1, B2) be a PT game with re-
spect to some |Ψ〉 ∈ H⊗H, then the bipartite quantum (n, m)-behaviour

P(x, z | a, c) = tr (Px ⊗ Pz|Ψ〉〈Ψ|)

with Px = |ux〉〈ux| for ux ∈ ba ∈ B1 and Pz = |uz〉〈uz| for uz ∈ bc ∈ B2
maximally violates a Bell inequality. Where n is the number of orthonormal basis in
B1 and B2 (we assume without loss of generality that the number of basis is equal)
and m = d, the dimension of the state space H.

Proof First, we construct N = n2 propositional formulas ϕ0,0, . . . , ϕn−1,n−1
for every possible input pair a, c, corresponding to the sets g(ba, bc) as de-
fined for PT games.

Let

ϕa,c :=
∨

(ux ,uz)∈g(ba,bc)

αx,a ∧ βz,c
∧

(ux′ ,uz′ )∈(ba×bc)\{(ux ,uz)}
¬αx′,a ∧ ¬βz′,c
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4. Quantum Non-Locality

with αx,a and βz,c as defined in (4.3)–(4.4).

It follows from the definition of PT games that the conjunction of formulas
ϕa,c is unsatisfiable. Assume towards contradiction that there exists an as-
signment of all αx,a and βz,c satisfying the conjunction of the formulas. This
assignment can be used to construct a pair of functions (s1, s2). Observe that
if ϕa,c is satisfied and αx,a is true then all αx′,a for x′ 6= x must be false. We
can set

s1(a) = ux with αx,a true

and similarly
s2(c) = uz with βz,c true.

Thus violating (4.5) and leading to contradiction.

Furthermore, we can compute the probabilities pa,c for ϕa,c from the proba-
bilistic behaviour

pa,c = ∑
(ux ,uz)∈g(ba,bc)

P(x, z | a, c) = ∑
(ux ,uz)∈g(ba,bc)

〈Ψ|ux, uz〉2.

Per definition of g we have pa,c = 1 for all a, c.

We may now use the inequality (4.2)

∑
a,c

pa,c ≤ n2 − 1.

The left hand side evaluates to n2 for the quantum behaviour, which is a
violation of this Bell inequality by a value of 1. It follows from the fact that
pa,c are probabilities that this is the maximal violation. �

By combining Theorem 4.3 and Theorem 4.4, we have linked every KS set to
a quantum behaviour that maximally violates a Bell inequality.

The converse is not entirely clear. While Renner and Wolf showed that a KS
set S ⊆ Cd can be constructed from any |Ψ〉-PT game (for |Ψ〉 ∈ Cd ⊗ Cd

as in Theorem 4.3), it is not evident that every maximal violation of a Bell
inequality by a quantum behaviour leads to a PT game. To show this one
would need to consider all possible Bell inequalities, which in general (see
Ref. [2, Section VI]) are not of form (4.2).

However, one can see that for maximal violations of Bell inequalities of form
(4.2) by a quantum behaviour with state |Ψ〉 as in Theorem 4.3 the sets of
measurement basis is a PT game. This follows because for maximal violation
the formulas ϕi must cover the entire support, corresponding with the func-
tion g. Being a Bell inequality the formulas must be jointly contradictory,
thus ruling out the existence of a pair of function (s1, s2) violating (4.5).

This may be seen as an answer to the question raised by Popescu and
Rohrlich [45]: “Why does quantum mechanics not violate the CHSH in-
equality maximally?”. The CHSH inequality is of form (4.2) and maximal
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violation by |Ψ〉 ∈ C2 ⊗C2 would lead to a KS set in C2, which is not possi-
ble [31].

Note that we are not able to retrieve the Tsirelson bound [54] (the quantum
mechanical maximal violation) from this argument, only the impossibility of
algebraic maximal violation. Also, we are restricted to the case of maximal
violation by the maximally entangled state |Ψ〉 as in Theorem 4.3.

Our argument is slightly stronger in the sense that not only is maximal
violation of CHSH impossible by |Ψ〉 ∈ C2 ⊗ C2 but also of any chained
CHSH inequality [10], which may be expressed in form (4.2) (see Refs. [2,
24]).
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Chapter 5

Computational Methods and
Considerations

5.1 Deciding Membership in Local Polytope

Pitowksi [40] showed that deciding if a probabilistic behaviour p lies in the
interior of the local polytope is NP-complete. Therefore, we do not expect to
find an efficient (polynomial time) algorithm. Nevertheless, as the problem
may be formulated as a convex optimization, deciding membership in low
dimensions is feasible using the following methods and modern computa-
tional resources.

5.1.1 Finding convex combination

By definition of a polytope (see Section 2.3), if a point p lies in a polytope P ,
then it may be represented as a convex combination of the extremal points
of P . Thus, a point p lies in the local polytope P local if and only if it may be
represented as a convex combination of the local deterministic behaviours,
the extremal points of P local. Deciding the existence of a convex combination
may be formulated as a linear program:

find x1, . . . , xs ∈ R

subject to p = ∑
i

xi pldb
i

∑
i

xi = 1

xi ≥ 0 for all i = 1, . . . , s. (5.1)

Although this program does not have an objective function it is polynomial
equivalent to a general linear program.
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As s is exponential in n and m (see Section 3.3.1), deciding if a (n, m)-
behaviour using this method amounts to solving a linear program with an
exponential number of variables and constraints.

5.1.2 Separating hyperplane

A standard method in Polyhedral Computation [19] is to consider the fol-
lowing equivalent program. The program (5.1) has a solution if and only if
the following has no solution:

find z ∈ Rd, z0 ∈ R

subject to z>pldb
i − z0 ≤ 0 for all i = 1, . . . , s

z>p− z0 > 0. (5.2)

Which amounts to fitting a separating hyperplane (z, z0) between the poly-
tope (its extremal points) and the point p. If such a hyperplane exists, then
p does not lie in the polytope. This may also be shown directly from the
separating and supporting hyperplane theorem [9, p. 46ff.].

Note that this corresponds to the the dual program of (5.1).

In practice we will use following linear program:

maximize z>p− z0

subject to z>pldb
i − z0 ≤ 0 for all i = 1, . . . , s

z>p− z0 ≤ 1. (5.3)

The last inequality is added to prevent arbitrary scaling of the hyperplane,
which would lead to an unbounded solution.

If the objective value of the linear program (5.3) is greater than zero z>p−
z0 > 0, then (z, z0) is a solution to the program (5.2) and thus p does not lie
in the local polytope.

We are able to make a minor improvement by assuming that the point p
lies in the non-signaling vector subspace. The following proposition follows
directly from the proof of the supporting hyperplane theorem. Nevertheless,
we give an explicit proof.

Proposition 5.1 For every non-signaling,non-local point p ∈ Vns \ P local, there
exists a supporting hyperplane (z, z0) with z ∈ Vns and some r ∈ P local satisfying

z>u− z0 ≤ 0 for all u ∈ P local, (5.4)

z>r− z0 = 0 (5.5)

and
z>p− z0 > 0. (5.6)
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Proof By proposition 2.5, there exists a unique point r ∈ P local with minimal
distance to p

‖p− r‖ = min
{
‖p− r′‖ | r′ ∈ P

}
. (5.7)

Let z = (p− r) and z0 = (p− r)>r. We have z ∈ Vns. Conditions (5.6) and
(5.5) follow

z>p− z0 = (p− r)>(p− r) = ‖p− r‖2 > 0

and
z>r− z0 = (p− r)>(r− r) = 0.

To show the remaining conditions, assume towards contradiction there ex-
ists a point u ∈ P local with

z>u− z0 = (p− r)>(u− r) > 0. (5.8)

Consider the point (1 − c)r + cu = r + c(u − r) ∈ P local with 0 ≤ c ≤ 1
(membership in P local follows from convexity of the polytope). We have for
the derivative of the squared distance to p evaluated at c = 0:

d
dc
‖p− (r + c(u− r)) ‖2

∣∣∣∣
c=0

= 2(r− p)>(u− r).

By (5.8) the term above is negative. Thus, we are able to find a point r +
c(u − r) for some c with smaller distance to p. This in contradiction with
(5.7), concluding the proof. �

Using proposition 5.1 we see that if p ∈ Vns it suffices to find a hyperplane
(z, z0) with z ∈ Vns.

maximize z>p− z0 with z ∈ Vns

subject to z>pldb
i − z0 ≤ 0 for all i = 1, . . . , s

z>p− z0 ≤ 1. (5.9)

Note that we do not need to specify the non-signaling constraints in the
linear program directly but instead use a basis of the non-signaling pace Bns

(see Section 3.2) and optimize over a variable x so that z = Bnsx.

5.2 Distance From Boundary of Local Polytope

Given a point p ∈ P local one may be interested in how close this behaviour
is to the boundary of the local polytope P local.

In our context, we are more precisely interested in the distance to the clos-
est non-local behaviour, i.e. to the non-trivial border of the polytope. We
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need to make this distinction as the local polytope is defined by boundaries
shared by all probabilistic behaviours (trivial Bell inequalities) and bound-
aries to non-local,non-signaling behaviours (non-trivial Bell inequalities).

In the following we discuss a few methods to compute the distance to the
non-trivial boundary of the local polytope and find non-signaling and non-
local behaviours close to some local behaviour p.

5.2.1 Convex hull

One possible approach would be to compute the convex hull of the local
polytope, that is compute the halfspace representation of P local, verifying
non-triviality of the Bell inequalities (see Section 5.3.1) and compute the
minimal distance.

However, computing the halfspace representation (known as the convex hull
problem) is in general not easy [19], especially considering that the number
of local deterministic behaviours defining the polytope P local is exponential
in n (see Section 3.3.1). In our case this method is not feasible.

5.2.2 Rays to non-local boxes

The distance from a point p ∈ P local to a non-trivial boundary may also be
computed by considering the non-local boxes (also called Popescu-Rohrlich
boxes), the non-local extremal vertices of the non-signaling polytope Pns.

A non-local box p′ ∈ Pns lies outside the local polytope P local, i.e. there
exists a non-trivial boundary between p and p′. By placing a ray from p to
p′ and using bisection one may find a point cp + (1− c)p′ ∈ P local on the
boundary of the local polytope. If this can be done systematically for all
non-local boxes, then the distance from point p to the non-trivial boundary
of P local may be computed.

Jones and Masanes [30] have given a complete characterization of all the
non-local boxes for arbitrary number of inputs n and m = 2. However, the
number of non-local boxes is extremely large even for small n, making a
systematic approach infeasible.

5.2.3 Sampling

If a point p ∈ P local is close to a non-trivial boundary, then by sampling
in a region around p we hope to find non-signaling and non-local points
p′ ∈ Pns \ P local close to p.

In particular we consider the affine space of normalized non-signaling points
Ans-norm ( Vns, the space of points in Vns satisfying the normalization con-
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ditions. This space is defined by a finite number of linear equalities

Cns-normq = (0, . . . , 0, 1, . . . , 1)>

which consists of the equalities Cns, imposing the non-signaling condition
(see Section 3.2), and the non-homogeneous equalities ensuring the normal-
ization condition (see Section 3.1).

Using the relationship between the solution space of homogeneous and non-
homogeneous systems of linear equations, as described in Section 2.1.2, we
can find an orthonormal basis Bns-norm such that

Ans-norm = {p + Bns-normx|x ∈ Rd}

where d is the dimension of Ans-norm. Note that p ∈ P local ( Ans-norm.

By choosing random x such that ‖x‖ = ε we are able to sample points
p′ ∈ Ans-norm lying on an ε-sphere around p. Note, however, that p′ obtained
by such sampling is not necessarily a non-signaling behaviour p′ ∈ Pns, it
may not satisfy the non-negativity condition (see Section 3.1).

In order to find p′ ∈ Pns \ P local we use following procedure, given Bns-norm

and some ε:

1. Choose x ∈ Rd randomly with ‖x‖ = ε and set p′ = p + Bns-normx.

2. If p′x,y,a,b ≥ 0 for all x, y, a, b (p′ ∈ Pns), then continue. If p′ does not
satisfy non-negativity condition (p′ 6∈ Pns), then reject p′.

3. Decide if p′ ∈ P local (see Section 5.1). If p′ 6∈ P local, then output p′ ∈
Pns \ P local.

If the procedure outputs a p′ ∈ Pns \ P local for some ε, then ε is an upper
bound of the distance between p and the non-trivial border of P local.

Note, however, that the rejection rate in step 2 can be very high.

For large ε (close to the diameter of the local polytope) many sampled points
will lie outside of the non-signaling polytope Pns, as its diameter coincides
with the diameter of the local polytope (see Proposition 3.6). Thus, this
method, in general, is unsuitable for estimating the distance to the non-
trivial border by variation of ε.

Also, if p contains elements with value zero, then it lies on a non-trivial bor-
der shared by the non-signaling polytope and many sampled points, even
with small ε, will be rejected.

On the other hand, if we do find a point p′ ∈ Pns \ P local for very small ε
(large enough to be able to use computational methods), then we have good
indication that p lies on a non-trivial Bell inequality, or at least very close
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5. Computational Methods and Considerations

to one. Given such a point p′ we can find a Bell inequality, which may be
interesting for further study (see Section 5.3).

Furthermore, if p ∈ P local does in fact lie on a non-trivial Bell inequality,
then with high probability (at least 1

2 ) the sampled points p′ ∈ Pns will be
non-local. This is because the non-trivial Bell inequality is a hyperplane
separating the space, we sample from, into two halfspaces. If we randomly
sample p′ ∈ Pns we will with high probability get a non-local point p′. The
rejection rate, however, may be very high.

Zero constraints

If we have a point p ∈ P local containing elements with value zero we may
consider an alternate space from which to sample point from.

Let Cns-norm-zero be a system of linear equations with equations correspond-
ing to Cns-norm and additional constraints for every element pi = 0 fixing the
value of the element at position i to zero. Consider the resulting affine space
Ans-norm-zero and corresponding orthonormal basis Bns-norm-zero.

We have for every element at position i with pi = 0

p′i = 0 for all p′ ∈ Ans-norm-zero.

Using the procedure as described above, we can find p′ ∈ Pns ∩Ans-norm-zero.

By including the zero constraints we decrease the chance of sampling a point
p′ 6∈ Pns, as the elements with value zero, which are most likely to result in
a negative point, remain zero.

We use the procedure on this zero-constrained space with small ε to decide
if some behaviour p ∈ P local lies on a non-trivial Bell inequality.

Finding a point p′ ∈ (Pns ∩Ans-norm-zero) \ P local close to some p ∈ P local,
implies that p is on or close to a non-trivial Bell inequality. The converse,
however, does not hold. There could exist a non-trivial Bell inequality (z, z0)
with z in the orthogonal complement of the sample space. The separating
hyperspace defined by (z, z0) would lie on (or parallel to) the sample space
and any sampled point would lie on (or parallel to) the non-trivial Bell in-
equality.

5.3 Finding Bell Inequalities

If p′ is a non-signaling and non-local behavior, then placing a separating
hyperplane between p′ and the local polytope (see Section 5.1.2) results in a
non-trivial Bell inequality. By using the methods described in Section 5.2.2
and 5.2.3 we may find such a behaviour p′ close to some behavior p ∈ P local.
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We use these methods, in particular the sampling procedure, to find non-
local, non-signaling behaviours p′ and non-trivial Bell inequality. The hope
is that this results in Bell inequalities that are in some sense close to a local
behaviour of interest p ∈ P local.

5.3.1 Trivial or non-trivial Bell inequality

In some situations it is not entirely clear if a Bell inequality is trivial or not.
We use following method to check non-triviality of a Bell inequality.

Deciding if a Bell inequality is trivial or not can be done by maximizing the
violation of the inequality over all non-signaling behaviours. If there exists
a non-signaling behavior that violates the inequality, the Bell inequality is
non-trivial.

Given a Bell inequality (z, z0), we use the following linear program

maximize z>p− z0 with p ∈ Vns

subject to ∑
x,y

px,y,a,b = 1 for all a, b

px,y,a,b ≥ 0 for all x, y, a, b. (5.10)

The constraints impose the the normalization and non-zero condition of be-
haviours (see Section 3.1).

If the objective value z>p − z0 > 0 then p is a non-signaling behavior and
(z, z0) a non-trivial Bell inequality.

5.4 Implementation

The methods mentioned above have been implemented using MATLAB, the
convex optimization toolbox CVX and the quantum information toolbox QLib

[33]. The implementation is available online1.

1http://cqi.inf.usi.ch/publications.html
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Chapter 6

Three-Partite Marginal Quantum
Non-Locality

As mentioned in Section 4.1, it is not clear which entangled states admit
non-local behaviour. Here we investigate the bipartite reduced states of
three-partite states for non-local behaviour.

6.1 Setting

We are interested in finding a three-partite quantum state ρABC ∈ S(HA ⊗
HB ⊗HC), such that the three bipartite reduced states

ρAB = trC(ρABC) ρAC = trB(ρABC) ρBC = trA(ρABC)

admit non-local behaviour

CQ
ρAB 6⊆ P local CQ

ρAC 6⊆ P local CQ
ρBC 6⊆ P local. (6.1)

Given such a state we can construct a quantum behaviour for ρABC

P(x, y, z | a, b, c)

such that the marginals P(x, y | a, b), P(x, z | a, c) and P(y, z | b, c) are non-
local quantum behaviours for the respective reduced states. Thus explaining
the term three-partite marginal quantum non-locality.

Trivial example

Consider the following pure state with the singlet |Φ〉 = 1√
2
|00〉+ |11〉

|ψ〉 = |Φ〉12 ⊗ |Φ〉34 ⊗ |Φ〉56 ∈ H1 ⊗H2 ⊗H3 ⊗H4 ⊗H5 ⊗H6.
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6. Three-Partite Marginal Quantum Non-Locality

If HA = H1 ⊗H3, HB = H2 ⊗H5 and HC = H4 ⊗H6, then clearly ρABC =
|ψ〉〈ψ| satisfies (6.1).

Observe that the marginal non-local behaviours P(x, y | a, b) and P(y, z |
b, c), fully defined by ρAB = |Φ〉〈Φ|12 ⊗ I3 ⊗ I5 and ρBC = I2 ⊗ I4 ⊗ |Φ〉〈Φ|56
respectively, do not imply non-locality of P(x, z | a, c) only assuming non-
signaling of P(x, y, z | a, b, c).

As shown by Coretti, Hänggi and Wolf [13], finding a quantum state ad-
mitting non-local behavior satisfying such a transitivity property might be
valuable in ruling out certain alternative models for the explanation of quan-
tum correlations. Moreover, such a state is interesting in itself, shedding
light on the character of quantum non-locality.

In the following we will study states that are likely to admit such behaviours.

6.2 The W-State

The W-state is a three-partite qubit state defined by

|W〉 = 1√
3
(|001〉+ |010〉+ |100〉) ∈ HA ⊗HB ⊗HC.

We have for ρABC = |W〉〈W| the bipartite reduced states

ρAB = ρAC = ρBC =
1
3
|00〉〈00|+ 2

3
|Ψ+〉〈Ψ+|

with |Ψ+〉 = 1√
2
(|01〉+ |10〉).

Because of the equivalence of the bipartite reduced states, showing that the
reduced state ρAB admits non-local behaviour CQ

ρAB 6⊆ P local implies that all
bipartite reduced states admit non-local behaviour, the state satisfies (6.1).

We have that the bipartite reduced states are entangled. Furthermore, Dür
et al. [14] showed that of all three-partite qubits the bipartite reduced states
of the W-state are maximally entangled.

In a recent result, Sawicki et al. [48] showed that the W-state is determined by
its single party reduced states and thus also by the bipartite reduced states
ρAB and ρBC. We have the property that given ρAB and ρBC, ρAC is fully
determined. Even tough this alone does not imply the transitivity property
for non-local behaviours, as described above, it seems like a positive step
towards showing such a property.

6.2.1 Monogamy

If a pure bipartite quantum state is entangled, then it is not entangled with
any other system. This is called the monogamy of entanglement.
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6.2. The W-State

For mixed states this is not the case. As seen above, an entangled mixed
bipartite state can be entangled to a third system. On a lighter note, such
states, e.g. the W-state, are sometimes said to be promiscuous.

Consider the following symmetric case. Let ρAB be any bipartite quantum
state. We call ρAB N-shareable if there exists a (N + 1)-partite state ρAB1B2···BN

so that ρAB = ρABi for all i.

We have that a bipartite quantum state is N-shareable for all N (also called
∞-shareable) if and only if it is separable (not entangled) [49].

One can easily see that the bipartite reduced states of the W-state are at most
2-shareable, the symmetric extension being the W-state.

Regarding behaviours we have another result by Terhal et al. [52]. If a bipar-
tite quantum state ρAB is N-shareable then any quantum behaviour with N
or less measurement settings per party does not violate any Bell inequality.
In other words, any quantum (n, m)-behavior for ρAB with n ≤ N is local.

This may be seen as a complement to a result by Masanes et al. [34], who
proved that any N-shareable non-signaling behaviour is local for N measure-
ment settings.

For the reduced states of the W-state this means that we can not expect to
violate a Bell inequality for n = 2. Non-local behaviours, in general, are not
ruled out by this result.

Note, that the W-state expresses more symmetry than required for the Terhal
result. While Terhal only requires for a symmetric extension ρAB1B2 so that
ρAB = ρAB1 = ρAB2 , for the W-state we additionally have ρAB = ρB1B2 . Wether
this condition implies stronger monogamy constraints is not known (or the
author is unaware of any such results). Finding non-local behaviour on the
bipartite reduced state of such a highly symmetric state would be interesting
in respect to such considerations.

6.2.2 Quest for non-locality

Having motivated the interest for such non-locality of the W-state we used
tools presented in Chapter 5 towards finding such non-locality. However, no
non-local behavior for the bipartite reduced state of the W-state was found
and neither were we able to construct a local hidden variable model (as
Werner did for Werner states). Nevertheless, we find indications that the
bipartite states does not admit non-local behaviour.

Measurement in standard basis

We know that the quantum behaviour achieved by measuring |Ψ+〉 in stan-
dard bases lies on a non-trivial face, i.e. non-trivial Bell inequality, of the
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6. Three-Partite Marginal Quantum Non-Locality

local polytope P local, while slightly rotating the bases results in non-local
behaviour.

On the other hand, measuring |00〉 in standard bases results in perfect corre-
lation, whereas slight rotations only increases non-correlated noise. Measur-
ing in the diagonal basis only results in noise, i.e. the outcomes (0, 0), (0, 1),
(1, 0) and (1, 1) are equally likely.

For the bipartite reduced state ρAB, which can be expressed as mixture of
|00〉 and |Ψ+〉, we expect to see, if at all, non-local behaviour while slightly
rotating the measurement bases from the standard basis. As large angles
of rotation result in high amount of non-correlated noise. We expect, if the
state admits non-local behaviour, that the behaviour for measurement in
standard bases lies on a non-trivial face of the local polytope P local for some
n.

Let Psb(x, y | a, b) be the quantum (n, 2)-behaviour achieved by measuring
the bipartite reduced state ρAB in the standard basis for all n measurement
settings. We have for all a, b

Psb(0, 0 | a, b) = tr (|0〉〈0| ⊗ |0〉〈0|ρAB) = 1/3,

Psb(1, 0 | a, b) = tr (|1〉〈1| ⊗ |0〉〈0|ρAB) = 1/3,

Psb(0, 1 | a, b) = tr (|0〉〈0| ⊗ |1〉〈1|ρAB) = 1/3 and

Psb(1, 1 | a, b) = tr (|1〉〈1| ⊗ |1〉〈1|ρAB) = 0.

In matrix notation (see Section 3.1) the behaviour has following form1/3 1/3 · · ·
1/3 0 · · ·

...
...

. . .


with the top left block repeated n2 times. We will call the corresponding
vector, as in (3.1), psb ∈ Rnk ·mk

.

Trivial Bell inequality

Note that psb in fact lies on the border of the local polytope P local, i.e. it lies
on a Bell inequality.

Consider the inequality (z, z0) (in matrix form) with following blocks(
0 0
0 −1

)
.

and z0 = 0. We have z>psb − z0 = 0 and z>p− z0 ≤ 0 for all p non-negative
and in particular all p ∈ Pns, it is a trivial Bell inequality (see Section 3.3.2).
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6.2. The W-State

Whether psb also lies on a non-trivial Bell inequality can not be ruled out by
this argument. However, we find indications that the point does not lie on
such a Bell inequality.

Non-trivial Bell inequality

Here we present indications that psb does not lie on a non-trivial Bell in-
equality.

First, observe that psb lies in a polytope defined by exponentially many local
deterministic behaviours.

Proposition 6.1 The point psb lies in the interior of a polytope defined by 2n+1− 1
local deterministic behaviours as extremal points.

Proof We proceed by defining the set of local deterministic behaviours defin-
ing the polytope and show a convex combination of psb with all coefficients
non-zero. From the existence of such a convex combination it follows that
the point does not lie in the interior of the polytope.

Observe that psb is zero at elements with output x = 1 and y = 1 for all
inputs a, b. That is, psb can not be expressed as convex combination with
non-zero coefficient for local deterministic behaviours that output x = 1 and
y = 1 for any a, b. Let P ′ be the polytope defined by all local deterministic
behavior that do not output x = 1 and y = 1.

Consider the local deterministic strategy (see Definition 3.3) s, s′ for the be-
haviours defining P ′. If an element sa = 1 then we have that s′ = (0, . . . , 0)
as otherwise the local deterministic behaviour would output (1, 1) for in-
put a and some b. We can now count the number of such deterministic
behaviours/strategies. All 2n possible string s ∈ {0, 1}n are possible when
s′ = (0, . . . , 0) and vice versa, thus we have 2 · 2n pairs of strategies. Note
that we count the strategy s = (0, . . . , 0) and s′ = (0, . . . , 0) twice, thus the
total number of strategies and local deterministic behaviours defining the
polytope is 2n+1 − 1.

Now to construct the convex combination. Consider the case where s ∈
{0, 1}n and s′ = (0, . . . , 0). Let s̄ ∈ {0, 1}n be the string with sa = 1⇔ s̄a = 0
for all a. Then the combination (not convex) 1

3 pldb
s,s′ +

1
3 pldb

s̄,s′ is, in matrix form,
a matrix with following blocks (

1/3 0
1/3 0

)
.

By adding another local deterministic behaviour with r = (0, . . . , 0) and
r′ = (1, . . . , 1) we get the convex combination 1

3 pldb
s,s′ +

1
3 pldb

s̄,s′ +
1
3 pldb

r,r′ = psb.
The case where s = (0, . . . , 0) and s′ ∈ {0, 1}n is symmetric.
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6. Three-Partite Marginal Quantum Non-Locality

We have shown that psb can be expressed as convex combination including
any local deterministic behaviour defining the polytope. All these convex
combinations can be used to construct a convex combination including all
extremal points with non-negative coefficients (a convex combination of a
convex combination). It follows straightforwardly that psb can not lie on the
border of the polytope P ′, concluding the proof. �

From Proposition 6.1 follows a condition for (non-trivial) Bell inequalities
on which psb lies.

Proposition 6.2 If psb lies on a Bell inequality, then so do exponentially many local
deterministic behaviours.

Proof Let (z, z0) be a Bell inequality with

z>psb − z0 = 0.

From Proposition 6.1 it follows that there exists a convex combination of psb

with N = 2n+1 − 1 local deterministic behaviours pldb
i ∈ P local

psb =
N

∑
i

ci pldb
i

with ci > 0 for all i.

We have

z>
(

N

∑
i

ci pldb
i

)
− z0 = 0.

Using z0 = ∑N
i ciz0, we get

N

∑
i

ciz>pldb
i − ciz0 = 0. (6.2)

Note that (ciz, ciz0) is simply a scaling of the hyperplane (z, z0) (see Section
2.1.3) and as pldb

i ∈ P local

ciz>pldb
i − ciz0 ≤ 0

for all i. It follows from (6.2) that ciz>pldb
i − ciz0 = 0 and in particular

z>pldb
i − z0 = 0

for all i. That is, all 2n+1 − 1 local deterministic behaviours pldb
i lie on the

Bell inequality (z, z0), concluding the proof. �

40



6.3. Beyond Qubits

As can be easily verified, the trivial Bell inequality, as presented in the sec-
tion above, satisfies Proposition 6.2.

Furthermore, we observe that the local deterministic behaviours defined by
s = s′ = (0, . . . , 0) is in the polytope P ′ from Proposition 6.1 and lies on
a non-trivial Bell inequality, a chained CHSH inequality. While the local
deterministic behaviour defined by s = (1, . . . , 1) and s′ = (0, . . . , 0), also in
P ′, lies on a distinct variant of the chained CHSH inequality.

In conclusion, if there exists a non-trivial Bell inequality (z, z0) that psb lies
on, then so do exponentially many local deterministic behaviours and some
of these local deterministic behaviours lie on at least two distinct non-trivial
Bell inequalities. While we were not able to find a geometric argument
ruling out the possibility of such non-trivial Bell inequalities, the existence
of such inequalities seems unlikely.

Computational methods, as described in Chapter 5, were used in order to
find such a non-trivial Bell inequality. However, we were not able to find a
non-trivial Bell inequality for n ≤ 5 using the sampling method (see Section
5.2.3). For higher dimensions, the rejection rate is too large.

We observe, computationally, that for n ≤ 14 the zero-constrained space
Pns ∩Ans-norm-zero coincides with the reduced polytope P ′ from Proposition
6.1, thus finding a Bell inequality on which psb lies by sampling in the zero-
constrained space does not work in this case.

Even tough we can not formally rule out non-local behaviour, our findings
indicate that the bipartite reduced states of the W-state do not admit non-
local behaviour.

6.3 Beyond Qubits

As we have indications that the W-state and thus possibly all three-partite
qubit states do not admit non-local behaviour for all bipartite reduced states,
we investigate three-partite states of higher dimension.

Consider the three-partite qutrit Aharonov state [17]:

|A〉 = 1√
6
(|012〉+ |120〉+ |201〉 − |021〉 − |102〉 − |210〉) .

We have for ρABC = |A〉〈A| the bipartite reduced states

ρAB = ρAC = ρBC =
1
3
|Ψ−01〉〈Ψ

−
01|+

1
3
|Ψ−02〉〈Ψ

−
02|+

1
3
|Ψ−12〉〈Ψ

−
12|

with |Ψ−ij 〉 =
1√
2
(|ij〉 − |ji〉).
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6. Three-Partite Marginal Quantum Non-Locality

Observe that ρAB is in fact a Werner state for d = 3 and α = 1 and as α > 1/4
the reduced state is entangled (see Section 4.1.1).

Despite the prominence of this state, the author was unable to find any
results indicating whether it admits non-local behaviour.

Nevertheless, Werner’s local model is only for the state with α = 2/3

2
3

ρAB +
1
27

I.

Thus, non-local behaviour is not impossible due to the results by Werner.

Again using the quantum behaviour for measurements in standard basis
(m = 3) as starting point psb we apply the sampling method, as described in
Section 5.2.3, to find interesting non-trivial Bell inequalities. The point psb

does not seem to lie on a non-trivial Bell inequality for n ≤ 4. Using the zero
constrained method, we were unable to find a non-trivial Bell inequality for
n ≤ 5.

For higher dimensions, simply computing the local deterministic behaviours
and deciding membership in the local polytope is very inefficient as there
are 32n such behaviours (see Section 3.3.1).

Also, no non-local behaviour was found using measurements with rotated
bases (various rotations around various rotation axes).
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Chapter 7

Discussion

“Begin at the beginning,” the King
said gravely, “and go on till you
come to the end: then stop.”

— Lewis Carroll, Alice in
Wonderland

Even tough we were not able to find three-partite marginal quantum non-
locality, we have found indications that no three-partite qubit state, in par-
ticular the W-state, admits such behaviour. As the computational methods
reach their limits, we propose an analytical inquiry for a local model and a
study of the monogamy constraints that may be implied by the symmetries
of the W and similar states.

We investigated the Aharonov state, a three-partite qutrit state with symmet-
ric and entangled bipartite reduced states, but were not able to find non-local
behaviour for the bipartite states. However, further inquiry is well justified
given not only the possibility of three-partite marginal non-locality but also
the bipartite reduced states relationship to the results of Werner. This rela-
tionship might be used for a more analytical study which is more robust to
the high dimensions than the computational methods we used.

Nevertheless, the computational methods presented, discussed and imple-
mented in Chapter 5 might be useful for future experiments and studies
including probabilistic behaviours.

In Chapter 4 we have shown that a bipartite non-local quantum behaviour
that maximally violates a Bell inequality can be constructed from any Kochen-
Specker set. This not only sheds light on to the relationship between contex-
tuality and non-locality but also is an example of bipartite non-local quan-
tum behaviour that reaches the maximal algebraic violation of a Bell inequal-
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ity. Whereas multipartite maximally non-local quantum behaviour has been
known to exist in the form of GHZ type non-locality [2], the author is un-
aware of previous results showing maximally non-local bipartite quantum
behaviours.

As mentioned, the converse, that every maximally non-local bipartite quan-
tum behaviour leads to a Kochen-Specker set, holds for a certain class of
Bell inequality and a maximally entangled state. As there are no Kochen-
Specker sets in two dimensional space, this may be seen as an answer to
the question raised by Popescu and Rohrlich [45], why Quantum Mechan-
ics does not maximally violate the CHSH inequality. A generalization to a
greater class of Bell inequalities and states might provide valuable insight
to the relationship between contextuality and non-locality as well as to the
question of which states admit non-local behaviour.
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[53] S. Teufel, K. Berndl, D. Dürr, S. Goldstein, and N. Zanghı̀. Locality
and causality in hidden-variables models of quantum theory. Physical
Review A, 56(2):1217, 1997.

[54] Boris Tsirelson. Quantum analogues of the Bell inequalities. The case
of two spatially separated domains. Journal of Mathematical Sciences,
36(4):557–570, 1987.

[55] Boris Tsirelson. Some results and problems on quantum Bell-type in-
equalities. Hadronic Journal Supplement, 8(4):329–345, 1993.

[56] Reinhard F Werner. Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model. Physical Review A,
40(8):4277–4281, 1989.

48



Bibliography

[57] Günter M Ziegler. Lectures on Polytopes. Springer, 1995.
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