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Now, by Fano’s lemma (cf., [3, p. 156])

H(KAjKB) � h(�) + � log
2
(2s � 1) � h(�) + �sA

and we obtain (1). This concludes the proof of Theorem 1.
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New Monotones and Lower Bounds in Unconditional
Two-Party Computation

Stefan Wolf and Jürg Wullschleger

Abstract—Since oblivious transfer, a primitive of paramount importance
in secure two- and multiparty computation, cannot be realized in an
unconditionally secure way for both parties from scratch, reductions
to weak information-theoretic primitives as well as between different
variants of the functionality are of great interest. In this context, various
monotones—quantities that cannot be increased by any protocol—are
introduced and then used to derive lower bounds on the possibility and
efficiency of such reductions.

Index Terms—Lower bounds, monotones, oblivious transfer, two-party
computation, unconditional security.

I. INTRODUCTION

The advantage of unconditional or information-theoretic security—
as compared to computational security—is that it does not depend on
any assumption on an adversary’s computing power or memory space,
nor on the hardness of any computational problem. Its disadvantage,
on the other hand, is that it cannot be realized from scratch. This is
why reductions are of great interest and importance in this context:
Which functionality can be realized from which other? If a reduction
is possible in principle, what is the best efficiency, i.e., the minimum
number of instances of the initial primitive required per realization of
the target functionality?

A task of particular importance in secure two-party computation is
oblivious transfer, which is known to be impossible to realize from
scratch in an unconditionally secure way for both parties by any (clas-
sical or even quantum) protocol. On the other hand, it can be realized
from noisy channels [7], [9], [12], weak versions of oblivious transfer
[8], [3], [4], [13], [14], [28], or correlated pieces of information [25],
[21].

For the same reason, reductions between different variants of
oblivious transfer are of interest as well: chosen 1-out-of-2 oblivious
transfer from Rabin oblivious transfer [6], string oblivious transfer
from bit oblivious transfer [3], 1-out-of-n oblivious transfer from
1-out-of-2 oblivious transfer, oblivious transfer from A to B from
oblivious transfer fromB toA [10], [22], [27], and so forth. A number
of lower bounds in the context of such reductions have been given,
based on information-theoretic arguments [15], [19].

With respect to information-theoretic reductions between crypto-
graphic and information-theoretic functionalities, quantities which
never increase during the execution of a protocol—so-called mono-
tones[5]—are of great importance. In key agreement, for instance,
two parties A and B can start with correlated pieces of information
X and Y , respectively, and try to generate a secret key S by public
communication such that an adversary E, who initially knows a
third random variable Z , is virtually ignorant about S. It has been
shown in [23] that the intrinsic information [20] of A’s and B’s
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entire knowledge, given E’s, is a monotone, i.e., cannot increase. This
immediately leads to the following bound on the size of the generated
key: H(S) � I(X;Y # Z).

A. Contribution

In Section III, we define monotones as quantities that cannot be in-
creased by any two-party computation. We explicitly give seven such
monotones. In Section IV, we show how these monotones can be used
to derive lower bounds on reductions between two-party primitives. In
Section V, finally, we present concrete lower bounds.

II. PRELIMINARIES

We say that two random variables X and Y are equivalent, denoted
by X � Y , if there exists a bijective function g :X ! Y such that
Y = g(X) holds with probability 1.

Three random variables X , Y , and Z form a Markov chain, denoted
by X $ Y $ Z , if PZjXY = PZjY . This means that X and Z are
independent, given Y .

A (noninteractive) functionality P takes as input the values x and y
from the two players Alice and Bob, and returns them values u and v
distributed according to a distribution PUV jXY .

A protocol is a pair of functions (f; g) that is executed between Alice
and Bob as follows. Let x and y be the inputs to the players, chosen
according to a fixed distribution PXY . The players choose uniformly
at random rA; rB 2 f0; 1g� and then repeat for i = 1; 2 . . .: If i is
odd, then Alice sends a message mi = f(x;m1; . . . ;mi�1; rA) to
Bob; if i is even, Bob sends a message mi = g(y;m1; . . . ;mi�1; rB)
to Alice. If anymi is equal to , i.e., if one of the two players aborts
the computation, then the loop is exited. Finally, Alice outputs u =
f(x;m1; . . . ;mi; rA), and Bob outputs v = g(y;m1; . . . ;mi; rA).

A protocol with black-box access to a noninteractive functionality P
can be defined in a similar way. Here, the players have additionally the
possibility to send messages to the functionality Q, which calculates a
result according to the definition of Q, and sends it back to the players.

We will mostly be looking at the semi-honest model, where both
players behave honestly, but may save all the information they get
during the protocol to obtain extra information about the other player’s
input or output. So, a dishonest Alice will output (x;m1; . . . ;mi; rA)
instead of f(x;m1; . . . ; mi�1; rA).

A protocol (f; g) that implements a functionality P is secure in the
semi-honest model for Bob, if there exist a randomized function S for
Alice, called the simulator, such that for every input (x; y) and for
(u; v) = h0(x; y), the distribution of (S(u); v) is equal to the distribu-
tion of ((x;m1; . . . ;mi; rA); g(y;m1; . . . ;mi�1; rB)).

A. Entropies and Information

The conditional Shannon entropy of X given Y is defined as1

H(X j Y ) = �
x;y

PXY (x; y) logPXjY (x j y):

We will also use the notation

h(p) = �p log p� (1� p) log(1� p);

i.e., h(p) is the Shannon entropy of a binary random variable that takes
on one value with probability p and the other with 1�p. The conditional
mutual information is defined as

I(X;Y j Z) =
x;y;z

PXY Z(x; y; z) log
PXY jZ(x; yjz)

PXjZ(xjz)PY jZ(yjz)

=H(X j Z)� H(X j Y Z):

1All logarithms throughout this correspondence are binary.

We will need the following monotonicity inequalities:

H(XY j Z) �H(X j Z) � H(X j Y Z);

I(WX;Y j Z) � I(X;Y j Z) � I(X;Y j f(X)Z)

for every function f .
The min- and max-entropies of X given Y are defined as

Hmin(X j Y ) := min
x;y

(� logPXjY (x j y));

Hmax(X j Y ) := max
y

log jfx 2 X : PXjY (x j y) > 0gj:

The monotonicity of Hmax

Hmax(XY j Z) � Hmax(X j Z) � Hmax(X j Y Z)

follows from

max
z

jf(x; y) 2 X � Y : PXY jZ(x; y j z) > 0gj

� max
z
jfx 2 X : PXjZ(x j z) > 0gj

� max
y;z

jfx 2 X : PXjY Z(x j y; z) > 0gj:

The monotonicity of Hmin

Hmin(XY j Z) � Hmin(X j Z) � Hmin(X j Y Z)

follows from

max
x;y;z

PXY jZ(x; y j z)

� max
x;z

PXjZ(x j z)

= max
x;z

y

PY (y)PXjY Z(x j y; z)

� max
x;z

y

PY (y)max
y

PXjY Z(x j y; z)

= max
x;y;z

PXjY Z(x j y; z):

Furthermore, we will need the following property of all these mea-
sures: For (X0; Y0; Z0) independent from (X1; Y1; Z1), and X =
(X0;X1), Y = (Y0; Y1), Z = (Z0; Z1), we have

H(X j Y ) =H(X0 j Y0) + H(X1 j Y1)

Hmin(X j Y ) =Hmin(X0 j Y0) + Hmin(X1 j Y1)

Hmax(X j Y ) =Hmax(X0 j Y0) + Hmax(X1 j Y1)

I(X;Y j Z) = I(X0;Y0 j Z0) + I(X1;Y1 j Z1):

B. Common Part

Roughly speaking, the common part X ^Y of X and Y is the max-
imal element of the set of all random variables (i.e., the finest random
variable) that can be generated both from X and from Y without any
error. For example, if X = (X0; X1) 2 f0; 1g

2 and Y = (Y0; Y1) 2
f0; 1g2, and we have X0 = Y0 and Pr[X1 6= Y1] = " > 0, then the
common part of X and Y is equivalent to X0. The common part was
first introduced in [17]; in a cryptographic context, it was used in [25].

Definition 1: Let X and Y be random variables over X and Y and
distributed according to PXY . ThenX^Y , the common part ofX and
Y , is constructed in the following way.

• Consider the bipartite graph G with vertex set X [ Y , and where
two vertices x 2 X and y 2 Y are connected by an edge if
PXY (x; y) > 0 holds.
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• Let fX :X ! 2X[Y be the function that maps a vertex v 2
X of G to the set of vertices in the connected component of G
containing v. Let fY :Y ! 2X[Y be the function that does the
same for a vertex w 2 Y of G.

• X ^ Y :� fX(X) � fY (Y ).
We will be needing the following two lemmas from [25].

Lemma 1: For all X , Y , and C for which there exist functions fX
and fY such thatC = fX(X) = fY (Y ) holds, there exists a function
g with C = g(X ^ Y ).

Proof: Let us assume that such a function g does not exist.
Then there must exist values x1 and x2 with fX(x1) 6= fX(x2) but
fX(x1) = fX(x2). Then x1 and x2 must be in the same connected
component of the graph from Definition 1, and we can find values
x01, x02, and y with fX(x01) 6= fX(x02), PXY (x

0
1; y) > 0, and

PXY (x
0
2; y) > 0. This implies that there cannot exist a function fY

with C � fX(X) � fY (Y ).

Lemma 2: Let (X1; Y1) and (X2; Y2) be independent. Then

(X1X2)^ (Y1Y2) � (X1 ^ Y1)(X2 ^ Y2):

Proof: We have PX X Y Y (x1; x2; y1; y2) > 0 if and only if
PX Y (x1; y1) > 0 and PX Y (x2; y2) > 0 because PX X Y Y =
PX Y PX Y . Hence, we have fX X (x1; x2) = fX X (x01; x

0
2) if

and only if fX (x1) = fX (x01) and fX (x2) = fX (x02).

C. Sufficient Statistics

Intuitively speaking, the sufficient statistics of X from Y , denoted
X & Y , is the part of X that is correlated with Y . It has turned out
to be a very useful concept in cryptography, where it was used in [24],
[16], [18], [25].

Definition 2: LetX and Y be two random variables, and let f(x) =
PY jX=x. The sufficient statistics ofX fromY is defined asX & Y :=
f(X).

We will be needing the following lemma from [25].

Lemma 3: Let (X1; Y1) and (X2; Y2) be independent. Then

(X1X2)& (Y1Y2) � (X1 & Y1)(X2 & Y2):

Proof: We have

PY Y j(X ;X )=(x ;x ) = PY jX =x PY jX =x :

Hence

PY Y j(X ;X )=(x ;x ) 6= PY Y j(X ;X )=(x ;x )

if and only if either

PY jX =x 6= PY jX =x

or

PY jX =x 6= PY jX =x

holds.

III. MONOTONES

We will now present a general definition of a monotone for two-party
computation and present several instances that satisfy our definition. A
monotone is a function that takes a distribution of two random variables
X and Y as input and outputs a number. In any protocol that Alice and
Bob may execute, they cannot increase the value of any monotone. The
monotone therefore tells us which results are impossible to achieve by a
protocol, and its value should yield an upper bound on the ”usefulness”
or potential of the random variables X and Y .

Definition 3: A monotone for two-party computation is a function
m(X;Y ), such that

1. for all X , Y , and Z with X  ! Y  ! Z , we have

m((X;Y ); Z) �m(Y;Z)

and

m(X; (Y; Z)) �m(X;Y );

2. for all X , Y , and all functions f , we have

m((X;f(Y )); Y ) �m(X;Y )

and

m(X; (Y; f(X))) �m(X;Y );

3. for all W , X , Y , and Z , with W  ! X  ! Y and X  !
Y  ! Z , we have

m((W;X); (Y; Z)) � m(X;Y );

4. for independent pairs (X0; Y0) and (X1; Y1) we have

m((X0;X1); (Y0; Y1)) = m(X0; Y0) +m(X1; Y1):

In order to define functions that are monotones we will make use
of the common part and the sufficient statistics. The following lemma
shows that under local data processing, i.e., creation of additional ran-
domness, these values are invariant. It will help us to show that our
functions satisfy Condition 1 of Definition 3.

Lemma 4: Let X , Y , and Z be random variables with X  !
Y  ! Z . Then we have

X & (Y; Z) �X & Y

(Y;Z)& X �Y & X

X ^ (Y; Z) �X ^ Y:
Proof:

• We have PY ZjX=x = PY jX=xPZjY . Therefore, for all x; x0 2
X , the function PY ZjX=x is different from PY ZjX=x if and only
if PY jX=x is different from PY jX=x .

• We have PXjY=y;Z=z = PXjY=y . Therefore, for all z; z0 2
Z and y; y0 2 Y , the function PXjY=y;Z=z is different from
PXjY=y ;Z=z if and only if PY jX=x is different from PY jX=x .

• We havePXY Z = PXY PZjY . Let us look at the connection graph
between all the values x and (y; z) for which PX(x) > 0 and
PY Z(y; z) > 0 hold. Then x and (y; z) are connected if and only
if PXY Z(x; y; z) > 0 holds. Since PZjY (z j y) > 0, this holds if
and only if PXY (x; y) > 0 holds. Hence, X ^ (Y;Z) � X ^ Y .

To show that our functions satisfy Condition 2 of Definition 3, we
need the following lemma.

Lemma 5: Let X and Y be two random variables and f a function.
There exist functions g and g0 such that

X & (Y; f(X)) � (X & Y; f(X))

(Y; f(X))& X = g((Y & X; f(X)))

g
0(X ^ (Y; f(X))) = (X ^ Y; f(X)):

Proof:
• Let h1(X) := X & (Y; f(X)) andh2(X) := (X & Y; f(X)),

and let F = f(X). We have PY F jX = PY jXPF jX . For all
x; x0 with h1(x) = h1(x

0), we have PY F jX=x = PY F jX=x ,
which holds exactly if PY jX=x = PY jX=x and f(x) = f(x0)
hold, which is equivalent to h2(x) = h2(x

0). Hence, X &
(Y; f(X)) � (X & Y; f(X)).

• Let h1(X;Y ) := (Y; f(X)) & X and h2(X;Y ) := (Y &
X; f(X)). For all x; x0; y; and y0 with h2(x; y) = h2(x

0; y0),
we have PXjY=y = PXjY=y and f(x) = f(x0). It follows



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008 2795

that PXjY=y;f(X)=f(x) = PXjY=y ;f(X)=f(x ), and, hence,
h1(x; y) = h1(x

0; y0). Therefore, there must exist a function g
with h1 = g � h2.

• The statement follows from Lemma 1 and from the fact that both
X ^ Y and f(X) can be calculated from both X and (Y; f(X)).

Lemma 6: For all random variablesW ,X , Y , andZ whereW  !
X  ! Y and X  ! Y  ! Z , we have

I(WX; Y Z j (WX) ^ (Y Z)) � I(X;Y j X ^ Y ):

Proof: We have PWXYZ = PXY PWZjXY . The channel
PWZjXY can be simulated by a function f that gets as input (X;Y )
and the random value C that is independent of (X;Y ), and outputs
(W;Z). (WX) ^ (Y Z) can be calculated from (X;C), as well as
from (Y;C). Hence, it can also be calculated from (X ^ Y; C). Fur-
thermore, X ^ Y can be calculated from (WX) ^ (Y Z). Therefore,
there exists a function g, such that

(WX) ^ (Y Z) = (X ^ Y; g(X ^ Y; C)):

Since C is independent of X and Y , it follows that

I(WX;Y Z j (WX) ^ (Y Z)) � I(X;Y j (WX) ^ (Y Z))

= I(X;Y j X ^ Y ):

Lemma 7: Let W , X , Y , and Z be random variables, and let
W  ! X  ! Y . There exist a function g such that

g((W;X)& (Y; Z)) = X & Y:

Proof: Let h1(W;X) := X & Y and h2(W;X) := (W;X)&
(Y; Z). For all w;w0; x, and x0 with h2(w;x) = h2(w

0; x0), we have
PY ZjW=w;X=x = PY ZjW=w ;X=x . Since W  ! X  ! Y , we
have

PY ZjW=w;X=x = PY jX=xPZjY;W=w;X=x:

It follows that PY jX=x = PY jX=x , and hence, h1(w;x) =
h1(w

0; x0). Therefore, there must exist a function g with h1 = g � h2.

Lemma 8: Let W , X , Y , and Z be random variables, and
let W  ! X  ! Y and X  ! Y  ! Z . For all
H� 2 fH;Hmin;Hmaxg, we have

H�((WX)& (Y Z) j Y Z) � H(X & Y j Y ):

Proof: From Lemmas 7 follows that

H�((WX)& (Y Z) j Y Z) � H�(X & Y j Y Z)

and from X  ! Y  ! Z follows that

H�(X & Y j Y Z) = H�(X & Y j Y ):

We are now ready to present our monotones for two-party computa-
tion.

Theorem 1: For all H� 2 fH;Hmin;Hmaxg, the functions
H�(X & Y j Y ), H�(Y & X j X), and I(X;Y j X ^ Y ) are
monotones for two-party computation.

Proof: For X  ! Y  ! Z and for all W , we have

I(XY ;Z j W ) = I(Y ;Z j W ):

From Lemma 4 and monotonicity follows that all these functions sat-
isfy Condition 1. Using Lemma 5 and monotonicity, we obtain

H�((Y; f(X))& X j X)

�H�((Y & X; f(X)) j X)

=H�(Y & X j X)

H�(X & (f(X); Y ) j f(X); Y )

=H�((X & Y; f(X)) j f(X); Y )

=H�(X & Y j f(X); Y )

�H�(X & Y j Y )

and

I(X; (f(X); Y )jX ^ (f(X); Y ))

� I(X; (f(X); Y ) j f(X);X ^ Y )

= I(X;Y j f(X);X ^ Y )

� I(X;Y j X ^ Y )

from which Condition 2 follows. Condition 3 follows from Lemmas 6
and 8. Condition 4 follows from Lemmas 2 and 3 and the properties of
H and I.

Depending on the situation, some of these monotones give better
bounds than others. If many independent instances of the underlying
resource are given, then the monotones using H should be used. When
the protocol makes some extraction, i.e., transforms a resource into
(almost) uniform randomness (a very common goal of protocols), then
the two monotones usingHmin might be preferable toH. The monotone
using Hmax gives better bounds for simulation protocols, i.e., protocols
that use random bits as a resource and have a nonuniform output. The
monotone using I is much less intuitive than the others, but nevertheless
yields, in some situations, a better bound than all the others. For an
example of this, see Corollary 1.

IV. LOWER BOUNDS ON REDUCTIONS OF TWO-PARTY PRIMITIVES

In this section, we show how all these monotones can be used to
get lower bounds on the efficiency of reductions among a variety of
two-party primitives. These primitives must satisfy the following prop-
erty: In the honest-but-curious model, they must be equivalent to a
primitive without any inputs, i.e., distributed randomness. By “equiva-
lent,” we mean that there exist two protocols: One that generates the
distributed randomness using one instance of the primitive, and the
other implementing the primitive, using the distributed randomness.
Both protocols must be secure in the semi-honest model. For any such
primitive, and any monotonem, we will now define them-capacity for
two-party computation.

Definition 4: Let m be a monotone for two-party computation. Let
P be a primitive between two players Alice and Bob. Furthermore,
let P be equivalent to a primitive P 0 which does not have any inputs,
and outputs random variables X and Y . Then the m-capacity of P is
defined by

Cm(P ) := m(X;Y ):

If there does not exist such a P 0, then the m-capacity is undefined.

Theorem 2: Let m be a monotone for two-party computation. Let
P1; . . . ; Pn, andP be primitives for which them-capacity is defined. If
there exists a protocol � that securely implements P using P1; . . . ; Pn
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in the semi-honest model (where every primitives Pi is independent of
the others and can only be used once), then

Cm(P ) �
i

Cm(Pi):

Proof: Let (Xi; Yi) be the distributed randomness which is equiv-
alent to Pi, and let (X;Y ) be the output of P 0, the primitive which is
equivalent to P . Let Xn = (X1; . . . ; Xn) and Y n = (Y1; . . . ; Yn).
Since (Xi; Yi) is independent from (Xj ; Yj), we have

m(Xn
; Y

n) =
i

m(Xi; Yi):

Let �0 be defined as follows: It takes Xn and Y n as input, transforms
them into the primitives P1; . . .Pn, applies �, and transforms P into
P 0. Let X and Y be the outputs and U and V be the entire views
of A and B, respectively, after the execution of �0. Let Ui and Vi be
memory of Alice and Bob after step i of �0. After the first step, we
have U1 = Xn and V1 = Y n. Since m is a monotone for two-party
computation, we have for all i that m(Ui+1; Vi+1) � m(Ui; Vi) and
therefore

m(U; V ) � m(Xn
; Y

n):

Since � is secure, also �0 is secure. Therefore, (X;Y ) has the same
distribution as (X; Y ), and there exist simulators SA and SB such
that (U; Y ) has the same distribution as (SA(X); Y ), and (X;V ) has
the same distribution as (X;SB(Y )). It follows that we have U  !
X  ! Y and X  ! Y  ! V . From the definition of m follows
that m(U; V ) � m(X; Y ). Hence

Cm(P ) =m(X;Y ) � m(U; V ) � m(Xn
; Y

n)

=
i

m(Xi; Yi) =
i

Cm(Pi):

V. LOWER BOUNDS FOR OBLIVIOUS-TRANSFER REDUCTIONS

We now apply the results of the last sections for deriving lower
bounds on oblivious-transfer reductions. We use the following three
monotones:

A(X;Y ) :=H(X & Y j Y );

B(X;Y ) :=H(Y & X j X);

C(X;Y ) := I(X;Y j X ^ Y ):

In m-out-of-n k-string oblivious transfer (OT), denoted n

m
-

k ,
the sender inputs n k-bit messages out of which the receiver can choose
to read m but does not obtain any further information about the mes-
sages; the sender, on the other hand, does not obtain any information on
the receiver’s choice. In [1], it has been shown that 2

1
-

1 is equiva-
lent to pieces of information with a certain distribution (in other words,
oblivious transfer can be precomputed and stored). This result general-
izes to n

m
-

k in a straightforward way.

Lemma 9: Let P = n

m
-

k . Then, we have

CA(P ) = (n�m)k; CB(P ) = log
n

m
; CC(P ) = mk:

We can now easily obtain lower bounds on the reducibility between
different variants of oblivious transfer. The bound of Corollary 1 is an
improvement on an earlier bound by Dodis and Micali [15].

Corollary 1: Assume that there exists a protocol for realizing un-
conditionally secure N

M
-

K from t instances of n

m
-

k . Then
we have

t � max
(N �M)K

(n�m)k
;
log N

M

log n

m

;
MK

mk
:

Proof: Follows from Lemma 9 and Theorem 2.

Fig. 1. Lower bounds on the number t of instances of - needed to
implement - .

For the special case M = m = 1, the obtained bounds are shown
in Fig. 1.

We can now also easily prove that OT cannot be extended, i.e., given
s instances of OT, there does not exist a protocol that constructs s+ 1
instances of OT. This was first proved by Beaver in [2]. This implies
that it is impossible to implement OT from scratch.

Corollary 2: There cannot exist a protocol that implements s + 1
instances of n

m
-

k out of s instances of n

m
-

k .

Let us now look at reductions of to noisy channels.

Definition 5: Let 0 < " < 1

2
. The binary symmetric noisy channel

(BNC) with error ", or (")- , is defined as follows. First, it waits
for Alice to send an input x 2 f0; 1g. After receiving x, it outputs a
value Y 2 f0; 1g to Bob, where Pr[Y 6= x] = ".

We can easily show that a binary noisy channel is equivalent to dis-
tributed randomness: Alice sends a random bit, which is received by
Bob with an error ". Later, Alice can send her bit XORed with this
random bit, and Bob will get to know her bit with probability ".

Lemma 10:
CA((")- ) =h(")

CB((")- ) =h(")

CC((")- ) = 1� h("):

Corollary 3: If a protocol implements N

M
-

K from t instances
of (")- in the semi-honest model, then

t � max
(N �M)K

h(")
;
log N

M

h(")
;

MK

1� h(")
:

Definition 6: Rabin oblivious transfer, or (p)- , is defined
as follows. First, it waits for Alice to send an input x 2 f0; 1g. After
receiving x, it outputs a value Y 2 f0; 1;?g to Bob, where Pr[Y =
x] = p and Pr[Y = ?] = 1 � p.

In the semi-honest model, (p)- is equivalent to a primitive
without any input. Alice sends a random bit using (p)- that is
received by Bob with probability p. Later, Alice can send her bit XORed
with this random bit.

Lemma 11:
CA((p)- ) = 1� p

CB((p)- ) =h(p)

CC((p)- ) = p:

Corollary 4: If a protocol implements N

M
-

K from t instances
of (p)- in the semi-honest model, then

t � max
(N �M)K

1� p
;
log N

M

h(p)
;
MK

p
:
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Note that for some special cases, we know reductions that achieve
the optimal bound of Corollaries 1 and 4, even in the malicious model
[15], [26], [11]. For Corollary 3, however, an efficient reduction is still
missing.

The bounds of this section can easily be generalized in many ways.
For example, one could also consider the reduction of OT to different
variants of OT, binary noisy channels, and Rabin-OTs at the same time.

VI. CONCLUSION

We have presented several monotones for two-party computation
and have shown that they provide us with a powerful tool to derive
lower bounds for reductions between functionalities in the semi-honest
model. Note that such lower bounds do generally not directly imply
lower bounds in the malicious model, as there are functionalities which
can trivially be implemented in the malicious model, but not in the
semi-honest model. However, for OT the lower bounds do also apply
to the malicious model, as it can be shown that any secure implemen-
tation of OT in the malicious model is also secure in the semi-honest
model.

In our work, we have only considered perfect reductions, however, it
would be preferable to have lower bounds for reductions with a (small)
probability of error.
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