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Abstract

More than a century ago, physicists around the world were collectively developing a theory
to describe the newly discovered strange behaviours of some physical systems. This marks the
birth of quantum theory. Few decades later, the groundbreaking idea to separate information from
its physical carrier led to the establishment of information theory. These, initially independent
theories, merged together in the last decades of the former century, leaving us with quantum
information theory. This thesis will explore topics at the intersection of mathematics, physics and
computer science, trying to elucidate the interwovenness of these three disciplines. While doing so,
the results that were established during the years of studies leading up to this work are introduced.
The question posed in the title will not be answered fully, as it may be too early still to give a
definite answer to this multifaceted question.
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Resumen

Hace más de un siglo, los f́ısicos de todo el mundo estaban desarrollando una teoŕıa para describir
comportamientos extraños recientemente descubiertos de algunos sistemas f́ısicos, lo que marca el
nacimiento de la teoŕıa cuántica. Algunas décadas más tarde, la idea innovadora de separar la
información de su portador f́ısico llevó al establecimiento de la teoŕıa de la información. Estas teoŕıas
independientes al principio se fusionaron en las últimas décadas del siglo anterior, dando lugar a la
teoŕıa de la información cuántica. Esta tesis explorará temas en la intersección entre matemáticas,
f́ısica y ciencias de la computación, tratando de dilucidar la interconexión entre las tres. Dicha
exploración se llevará a cabo junto con la presentación de los resultados obtenidos durante estos
años de estudio. La pregunta planteada en el t́ıtulo no será respondida completamente, ya que
puede ser demasiado pronto para dar una respuesta definitiva a esta amplia pregunta.
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Resum

Fa més d’un segle els f́ısics de tot el món desenvolupaven una teoria per descriure comportaments
estranys recentment descobertes d’alguns sistemes f́ısics, això marca el naixement de la Teoria
Quàntica. Algunes dècades més tard, la idea revolucionària de separar la informació de la seva
companyia f́ısica va conduir a l’establiment de la Teoria de la Informació. Aquests al principi es
van unir les teories independents en les últimes dècades del segle anterior deixant-nos de Teoria
de la Informació Quàntica. Aquesta tesi explorarà una intersecció entre matemàtiques, f́ısica i
informàtica, tractant d’aclarir l’entrellaçat de l’anterior. Tot seguit, es van establir els resultats que
es van establir durant els anys d’estudis que van dur a aquest treball. La pregunta plantejada en
el t́ıtol no es respondrà plenament ja que pot ser massa aviat per donar una resposta definitiva a
aquesta àmplia pregunta.
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Chapter 1

Introduction

This dissertation is written under a cotutela agreement mutually established between the Faculty
of Informatics of the Universitá della Svizzera Italiana and the Unitat de Fisica Teorica: Informacio
i fenomens quantics of the Universitat Autonoma de Barcelona (see Appendix A). As the concept
and understanding of what a doctoral education is changing and has changed throughout history
this work starts with a short excursion on the most recent official definitions of the framework
underlying this thesis.

Both the Swiss Confederation and the Kingdom of Spain have signed the Bologna Declaration in
1999 [1]. Therefore the concepts and definitions established in the process that followed declaration
shall serve as a basis for finding out what a doctorate is within this framework, naturally respecting
the national regulations of each side. The European Qualifications Framework [2], the latest step
towards a unified higher education in europe, defines the learning outcomes of level 8 as follows

• knowledge at the most advanced frontier of a field of work or study and at the interface
between fields

• the most advanced and specialised skills and techniques, including synthesis and evaluation,
required to solve critical problems in research and/or innovation and to extend and redefine
existing knowledge or professional practice

• demonstrate substantial authority, innovation, autonomy, scholarly and professional integrity
and sustained commitment to the development of new ideas or processes at the forefront of
work or study contexts including research.

and adds that

Level 8 is compatible with the Framework for Qualifications of the European Higher
Education Area.

So one can go and take a look at the Framework for Qualifications of the European Higher
Education Area [3]. It turns out that level 8 of the European Qualifications Framework corresponds
to completing the third cycle of the Framework for Qualifications of the European Higher Education
Area [3]. In the report one can find that the title corresponding to completing a doctorate shall be
awarded to students who:

1



2 CHAPTER 1. INTRODUCTION

• have demonstrated a systematic understanding of a field of study and mastery of the skills
and methods of research associated with that field;

• have demonstrated the ability to conceive, design, implement and adapt a substantial process
of research with scholarly integrity;

• have made a contribution through original research that extends the frontier of knowledge by
developing a substantial body of work, some of which merits national or international refereed
publication;

• are capable of critical analysis, evaluation and synthesis of new and complex ideas;

• can communicate with their peers, the larger scholarly community and with society in general
about their areas of expertise;

• can be expected to be able to promote, within academic and professional contexts, techno-
logical, social or cultural advancement in a knowledge based society.

with a footnote defining the term ’research’ as follows

The word ’research’ is used to cover a wide variety of activities, with the context often
related to a field of study; the term is used here to represent a careful study or investi-
gation based on a systematic understanding and critical awareness of knowledge. The
word is used in an inclusive way to accommodate the range of activities that support
original and innovative work in the whole range of academic, professional and techno-
logical fields, including the humanities, and traditional, performing, and other creative
arts. It is not used in any limited or restricted sense, or relating solely to a traditional
’scientific method’.

One may ask the question why all above definitions are cited here. The answer lies in the ques-
tion about what a doctoral thesis actually is. Unfortunately the living traditions of the academic
institutions that weave together a meaning for the theses that written there, are in general not
citable. Reading literature on the history and development of academia and specially PhD theses
[4, 5, 6], gives a lot of insight but is only a partially satisfying answer to above question. Bureau-
crats, however, always seem to find words to categorise the world.

Theses generically do not answer the question what they are supposed to be, but rather start
with an introduction to an already highly specialised field. In both the physics and the information
theory community self-containedness and consistency are highly regarded properties. That is why
I want this thesis to be self-contained and consistent not only in technical terms of the branch of
science this thesis is written in but also in the context of this work being a doctoral dissertation,
i.e. this thesis starts with what it is.
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1.1 Outline

After having introduced what this dissertation is in the introductory chapter, here shall be the
outline of the content of this thesis. Chapter 2 starts the overview of quantum information the-
ory, also quantum theory and information theory will be discussed. The technical fundamentals
are established and all basic notions necessary are given. Chapter 3 discusses the importance of
bases for the description of the systems used in quantum information theory and also includes the
introduction of a basis that was developed within this doctoral studies. Chapter 4 then continues
with the description and discussion of one of the most essential phenomenon of the field, namely
entanglement. This also includes applications and theoretical tools for the detection and quantifi-
cation of entanglement. Chapter 5 will discuss the interplay of thermodynamics and information.
In this chapter quantum machines will be introduced and there is a short excourse on how to go
a step further. Chapter 6 will discuss time and specifically how to measure it. For this purpose
the notion of the autonomous clock is described and its properties analysed. This thesis ends with
Chapter 7 which contains the conclusions.

Chapter 2 is partially based on [7]. Chapter 3 and 4 are partially based on [8, 9, 10]. Chapter
5 and 6 are partially based on [11].
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Chapter 2

Quantum Information Theory

This chapter will start with a brief historic overview of the origins of quantum theory and in-
formation theory. We will then see how these theories merged together to quantum information
theory. After this, all necessary definitions and notions that we will need to understand this inter-
section between physics, mathematics and informatics will be introduced. This chapter ends with
a no-go result on the generalisation of an information measure to situations where identical and
independently distributed (i.i.d.) resources are not available.

2.1 Quantum Theory

Unlike other physical theories, quantum theory was not delivered in one piece as a ’quantum’ of
knowledge. It was developed over several decades by various people until it became the theory that
will be presented in this chapter. Here we want to follow the history of how these bits and pieces
came together.

The first step towards quantum mechanics was actually an attempt to save classical physics.
This happened at a time when young students interested in the physics of nature were advised not
to do so, as everything has been done already and there was nothing new to discover [12]. It seemed
at that point, that studying physics had been reduced to mere engineering, in the sense that one
would study physics solely to learn how to apply the given laws. A small, but groundbreaking step
was introduction of the ‘Wirkungsquantum’ by Max Planck in 1900 [13]. The ‘Wirkungsquantum’,
a quantum of action, is a constant that relates the frequency of a electromagnetic wave to its en-
ergy. First, it was just a working hypothesis in order to fix the inconsistencies that arose in the
description of the black body radiation by the Rayleigh-Jeans and Wien’s law [14, 15, 16], known
as the ’ultraviolet catastrophe’ and the ’infrared divergence’, pointing at the spectra of light where
the theory was failing to reproduce the experimental data. It would take another ten years for
Planck to make sense of the implications of his newly introduced concept.

It was Albert Einstein who convinced Planck at the first Solvey conference [17], that the theory
of quanta of lights, photons, he had used to describe the photoelectric effect made sense and that
the ’Wirkungsquantum’ was a constant of nature, not just an number to fine-tune an effective the-
ory. Still, it was up to other scientists to figure out how all the puzzle pieces would fit together, as

5



6 CHAPTER 2. QUANTUM INFORMATION THEORY

both Einstein and Planck were not totally satisfied with the genie that they let out of the bottle.

Here the story gets complicated to tell, as a lot developments happened at the same time. Let
us start north, where Niels Bohr was one of the first physicist to use the new theory of quantas to
come up with a more consistent description of the atom [18]. Although Bohr’s model of an atom
was later replaced by one of orbitals, it was one of the first milestones [19]. He would continue until
his death to work on quantum theory. His principles of correspondence and complementarity form
an essential part of the efforts to make sense of this newly arising theory.

Meanwhile, in Hamburg, Wolfgang Pauli a physicist from Vienna, got to know Otto Stern, whose
experiments together with Walther Gerlach, known as the Stern-Gerlach experiment, marked an-
other stepping stone for the young theory [20]. With the help of some coincidences they managed
to show the quantisation of the spatial direction of the angular momentum in silver atoms. This
quantised form of angular momentum was later found by Pauli to be a new degree of freedom, that
is nowadays known as spin. After Werner Heisenberg introduced his matrix theory of quantum
mechanics, Pauli used it to reproduce the observed spectrum of the hydrogen atom, which in turn
gave credibility to Heisenberg’s new formalism [21, 22].

Another physicist from Vienna, named Erwin Schrödinger, living in Switzerland at that time
found a different way to model the observed quantisation of the world. In his seminal paper ’Quan-
tisierung als Eigenwertproblem’ [23] he presents a differential equation, now known as Schrödinger
equation, that also gives the right energy eigenvalues for the hydrogen atom. It quickly became
clear that Heisenberg’s matrix theory and Schrödinger’s wave mechanics are actually equivalent
[26]. This discovery is generally attributed to Paul Dirac, whose very convenient notation, called
bra-ket notation, is used up to today.

A decade later, the research on quantum theory in central Europe had ceased due to the rise of
the fascist Nazi regime. Many of the founders named above had to flee due to their political views
or ancestry. One scientist that was fighting the Fascists since the beginning of the thirties was Grete
Hermann (principiis obsta sero medicina paratur cum mala per longas convaluere moras). Aside
from actively fighting the nazis, she pursued research on the foundations of physics with special
focus on quantum theory [24]. Although she was actively involved in the discussion on quantum
theory, exchanging ideas with many of the above mentioned, her work was overlooked for decades.
Not only had she already conducted research on the distinction between predictability and causality,
she had also already written about a hidden variable theory interpretation for quantum mechanics.
This was published in ‘Welche Konsequenzen haben die Quantentheorie und die Feldtheorie der
modernen Physik für die Theorie der Erkenntnis?’ [25] were she criticises John von Neumann’s
proof of the impossibility of such. Her proof was independently discovered by John Stewart Bell
decades later. Despite it being counterfactual, one can imagine how the world could have had
developed if she would have been taken seriously.
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2.2 Information Theory

World War II marks the end of the completion of quantum theory, as well as it marks the beginning
of research in informatics. Already at the beginning of the forties, the Third Reich had gained
new territory quickly allowing the Germans to expand their genocide operation. The Nazi troops
marching all over Europe were ciphering their important communication with an electro-mechanical
rotor machine, called Enigma. Cracking the daily changing encoding of messages through Enigma
was not only a substantial aid to the Allies during the war, it also plays a big role in the birth of
information science. This was the first time that major resources were dedicated to developing and
engineering electromechanical devices that were able to compute in a powerful way. One of the
people responsible for this major effort was Alan Turing.

Before continuing to tell the history of computers and how quickly information sciences devel-
oped after World War II, let us go a little further back in time. Nearly exactly a hundred years
earlier, the first complex computer program was written, when machines that were able to execute
it were still futuristic and the amount of resources necessary to build such an device were immense.
Augusta Ada King, Countess of Lovelace (Ada Lovelace for short) wrote an algorithm that calculates
a series of Bernoulli numbers for a machine, that at this point only existed on paper. This machine
was called the Analytical Engine and it was proposed by Charles Babbage in 1837. His designs are
the first known plans of an device that fulfills a property that we nowadays call Turing-completeness.

Back in the midst of a horrible war, the people in the United Kingdom Government Code and
Cypher School at Bletchley Park did not know about Babbage’s design nor Lovelace’s algorithm.
They constructed their own devices based on the first mathematical description of a computer
introduced by Alan Turing [27]. This model, called a Turing machine, is the mathematical descrip-
tion that we use in information sciences to describe computing devices. His article did not only
feature the introduction of a mathematical model of computation, he also uses it to follow Gödel’s
footsteps. Years prior to Turing’s article Gödel incompleteness theorems [28] had shattered David
Hilbert’s dreams of finding mathematics to be complete and consistent with. Turing, fascinated by
these results, added on top of this the proof that also the Entscheidungsproblem was uncomputable.
This proof was given in a different form by Alonzo Church at the same time. Both of the proofs
rely on the notion of ”effectively calculable” functions. Today we know this assumption as the
Church-Turing hypothesis, in plain english it states that that a function on the natural numbers is
computable if and only if it is computable by a Turing machine.

Now that we have looked into the beginnings of our understanding of computing devices let us
turn to roots of our mathematical understanding what a signal is. We do not have to go far, neither
in space nor time. In 1943 Turing was sent to Washington to exchange information with the United
States Navy on the topic of the cryptanalytic methods they were using at Bletchley Park. There he
met a young and bright scientist who was working at Bell Labs at that time. His name was Claude
Shannon and the work he did in the years to come basically mark the genesis of information theory
as it will be presented later on in this thesis.
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2.3 Quantum Information Theory

After having had a brief excursion into the history of both quantum theory and information the-
ory, let us look at how they started to interact with each other. This happened surprisingly late.
Although they share common founders, such as for example John von Neumann, who substantially
contributed to both fields, it took decades for scientists to connect them. Maybe because most
of the brain power and physical resources were devoted to exploit the two new theories to the
maximum. The development of new small transistors accelerated the construction ever faster and
powerful computers while physicists convinced formerly hostile world powers to collaborate in the
Conseil Européen pour la Recherche Nucléaire (CERN). This huge collaboration was meant to level
the playing field under the premise that the possibility to construct another disastrous weapon like
the nuclear bomb dormant in the depths of physics. One of the scientists working there in the late
fifties was John Stewart Bell. As a hobby, as he put it [29], he was working on the foundations of
quantum mechanics in his free time. He was especially interested in a ’paradox’ that was brought
up by Einstein, Podolski and Rosen (EPR) in 1935 [30]. The basis of what EPR found to be para-
doxical is a phenomena that known as entanglement (a term coined by Schrödinger). Bell was able
to follow EPR’s line of thought in order to derive his famous theorem and the inequalities that it
implied. At that time his work did not have an immediate impact but we will see that it plays a
central role for what will become quantum information theory.

The first known person to actually interweave quantum and information was Stephen Wiesner,
using the polarisation of light for his conjugate coding in 1969 [31]. With these ideas he was far
ahead of his time which meant that his research was neither acknowledged nor published for over a
decade. He eventually quit academic life and moved back to Israel, it is said that he visits Ahara-
nov’s group meetings from time to time [32]. The sixties did not only bring what can be regarded as
the genesis article of quantum information theory, the world was also witnessing increasing tensions
between the United States and the Soviet Union. This caused a stockpiling of physics graduate
students as they were seen as war commodities [33].

The bubble burst in the seventies, leaving behind unemployed physicists that had earned their
PhDs at the most prestigious physics departments in the country. At the this time when the New
Age movement and counterculture had reached their heights, a group of young physicists founded
a spirited, informal discussion group, they called the Fundamental Fysiks Group. These were wild
times and the group was in midst of it. Imagine a time in which United States military intelli-
gence was trying to use psychic phenomena, such as remote viewing or mind-reading, for military
purposes. In this setting, nothing but an ordinary conservative life seemed possible, several mem-
bers of the Fundamental Fysiks Group quickly became obsessed with quantum entanglement and
Bell’s theorem. Bell’s theorem seemed to them as finally offer explanations for the paranormal
phenomena and even open new ways to understand human consciousness. For a long time, nearly
all publications regarding Bell’s theorem and quantum entanglement came from participants of
the Fundamental Fysiks Group. Furthermore, they had created an extensive, underground network
that they used to circulate preprints amongst other things, not much unlike arXiv just much slower.
This is how Nick Herbert a Stanford physics graduate disseminated his article on FLASH, a scheme
for superluminal communication [34, 35].

Through a series of coincidences the FLASH paper ended up in the hands of Bill Wootters and
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Wojciech Zurek. They published a short paper refuting Herbert’s with help of the no-cloning theo-
rem [36]. The no-cloning theorem, which states that in general an unknown quantum state cannot
be copied, is the foundation for many results in quantum information theory, as for example the
security of quantum cryptography just to name one. Wootters and Zurek were not the only ones
to see that there was something wrong in the FLASH scheme. Dennis Dieks a Dutch physicist that
had met Herbert, while he was visiting Amsterdam, independently discovered the theorem in the
same year [37]. Last but not least GianCarlo Ghirardi who had been a referee of Herbert’s initial
submission, rejected the paper by the same argument [35].

Around the same time, the concept of a quantum computer started pop up. First, Paul Benioff
introduces a quantum mechanical model for the description of computers [38] and shortly after
Richard Feynmann shows that we do not know any efficient methods to simulate the dynamics of
quantum systems on Turing machines [39]. This was independently done a little earlier by Yuri
Manin in the Soviet Union [40]. These results meant that there was the need for a more general
computational model which also allows to efficiently simulate quantum behaviour. This was done
in less then five years by David Deutsch, who introduced the first model of an universal quantum
computer [41].

In the beginning of the nineties Artur Ekert caught the attention of the physics and informat-
ics community with the introduction of an entanglement-based secure communication scheme [42].
This afterwards resulted in attention for Charles Bennett’s and Gilles Brassard’s work on quan-
tum key distribution [43] seven years earlier, that had gone mostly unnoticed. The nineties were
marked by the development of a lot of the seminal results in quantum information theory, like the
first quantum algorithms [44, 45, 46], the first quantum error correction schemes [47, 48], quantum
annealing [49] and quantum coding results [50]. They also mark the time of the first experimental
implementations, e.g. quantum logic gates [51, 52], Grover’s algorithm [53] and quantum telepor-
tation protocol [54].

With the new millennium, the development of the field of quantum information increased in
tempo, and still has a lot of momentum today. So let us go into the fundamentals that allow us to
discover this young field in a rigorous manner.

2.4 Preliminaries

Let us define the necessary mathematical notions in order to introduce the postulates which we will
use to describe quantum theory.

Definition 2.4.1 (Hilbert space). A Hilbert space H is a complex vector space with an positive
definite Hermitian inner product 〈·|·〉, s.t. it is complete in the metric defined by the norm.

In this work we will use both finite- and infinite-dimensional Hilbert spaces. For some finite-
dimensional Hilbert spaces HA,HB their dimensionality will be denoted by dA = |A|, dB = |B|,
respectively. Sometimes Hd will be written to denote a d-dimensional Hilbert space. Furthermore
the space of homomorphisms M : HA → HB is written as Hom(HA,HB).
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We can associate any vector, element of some Hilbert space HA, with a ket |φ〉A ∈ Hom(C,HA),
exploiting the isomorphism HA ∼= Hom(C,HA). The bra 〈φ|A ∈ Hom(HA,C) is the adjoint of the
ket and is an element of the dual space of HA. This is the so-called bra-ket or Dirac notation.
Moreover, End(H) is the set of endomorphisms on H, i.e. the homomorphisms from a Hilbert
space H to itself.

The eigenvalues of some operator OA ∈ End(H) are denoted as λi(OA) and its singular values
as si(OA), where the subscript specifies the system the operator acts on. For the hermitian adjoint
of some operator O we use the expression O†, additionally the set of Hermitian operators on H is
defined as Herm(H) := {H ∈ End(H) : H = H†}.

An important operation we will make use of a lot is the trace of an operator.

Definition 2.4.2 (Trace). The trace of an operator is defined as

Tr(OA) :=
∑
i

〈ei|OA|ei〉 (2.1)

where {ei}i is any orthonormal basis of HA.

We will also make use of the trace norm.

Definition 2.4.3 (Trace norm, 1-norm). Let O ∈ End(H) then

||O||1 := Tr
√
O†O. (2.2)

The identity operator denoted by 1 ∈ End(H) maps any vector |φ〉 ∈ H to itself. It can be
written as

1 =
∑
i

|ei〉〈ei| (2.3)

for any orthonormal basis {ei}i of H.
The set of positive semi-definite operators that act on H is denoted as P(H) and is defined as

P(H) := {O ∈ Herm(H) : λi(O) ≥ 0 ∀ i}. (2.4)

2.5 Postulates of Quantum Theory

Now we have gathered all the necessary tools to introduce the postulates which we will use to
describe quantum theory.

Definition 2.5.1 (Postulate 1: States). The state of a quantum system is described by a positive
semi-definite Hermitian operator ρ ∈ End(H), called a density matrix.

Sometimes a shorthand notation ρ ∈ H will be used. We will differentiate between pure and
mixed quantum states

Definition 2.5.2 (Pure states). A quantum state is called pure iff

ρ2 = ρ. (2.5)
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If we deal with pure states we will sometimes write just the associated ket |φ〉 due to the fact
that in the case of pure states

ρpure = |φ〉〈φ|. (2.6)

Definition 2.5.3 (Mixed states). All quantum states that are not pure, are called mixed.

Mixed states can be written as a mixture of pure states

ρmixed =
∑
i

pi|φi〉〈φi| (2.7)

where {pi} is some probability distribution with
∑
i pi = 1 and 0 < pi ∈ R. Furthermore we will

introduce a quantity called the purity of a quantum state

Definition 2.5.4 (Purity). The purity of a quantum state is given by

Tr(ρ)2 ∈
[

1

d
, 1

]
. (2.8)

The lower bound for the purity is attained for the so called maximally mixed state.

Definition 2.5.5 (Maximally mixed state). The state

ρmax :=
1

d
1 (2.9)

is called maximally mixed state.

Definition 2.5.6 (Postulate 2: Observables). Observables corresponding to physical properties
of a quantum systems are described by linear operators O ∈ Herm(H), where each eigenvalue λi(O)
represents a possible value.

Due to the Hermiticity of the observables the eigenvalue decomposition can be employed, i.e.

O =
∑
i

λiPλi (2.10)

where λi is an eigenvalue of O and Pλi is the projector onto the subspace of the respective eigenvalue.

Definition 2.5.7 (Postulate 3: Measurements). Measuring a quantum system in state ρ with an
observable O will give the outcome k with probability

pk = Tr(Pλkρ). (2.11)

Conditioned on the observation of outcome k the post-measurement state is given by

ρk :=
1

pk
PλkρP

†
λk
. (2.12)

This postulate is also known as Born rule. Next we need to define the notion of an expectation
value in the context of quantum theory
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Definition 2.5.8 (Expectation value). The expectation value of measuring a quantum system
in state ρ with an observable O is given by

〈O〉ρ := TrOρ. (2.13)

Sometimes the shorthand notation 〈O〉 will be used instead of 〈O〉ρ. To continue with our
endeavour to describe quantum theory with a small set of postulates we need to define a special
kind of observable, specifically the one corresponding to the energy of a system, called Hamiltonian.

Definition 2.5.9 (Hamiltonian). The observable corresponding to the energy of a quantum system
is called Hamiltonian.

Before we define the postulate on the evolution of quantum states let us take a look at its origins,
namely the Schrödinger equation

Definition 2.5.10 (Time-dependent Schrödinger equation). The Schrödinger equation de-
scribes the time evolution of the state of a closed quantum system,

i~
d |ψ〉
dt

= H(t) |ψ〉 . (2.14)

Its stationary version makes the concept of the Hamiltonian as the observable corresponding to
energy clearer.

Definition 2.5.11 (Stationary Schrödinger equation). The time-independent Schrödinger
equation states that

H |ψ〉 = E |ψ〉 (2.15)

where E is a constant equal to the total energy of the system.

As we have stated all our axioms in terms of density matrices so far with have to do the same
for their evolution.

Definition 2.5.12 (Postulate 4: Evolution). The evolution of a quantum state ρ describing a
closed system with a Hamiltonian H is given by

dρ

dt
= − i

~
[H, ρ] . (2.16)

This postulate is also known as the Liouville-von-Neumann equation and given a time-
dependent state ρ(t)1 the solution is

ρ(t) = e
i
~Htρ(0)e−

i
~Ht. (2.17)

To go into greater detail regarding the evolution of quantum states let us have a look at a class
of operators called unitaries.

1The picture we have chosen here, namely to have time-dependent states and time-independent observables, is
called the Schrödinger picture. One may also choose it the other way around which would lead to the Heisenberg
picture. A description where both states and observables evolve in time is called Interaction picture or Dirac
picture.
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Definition 2.5.13 (Unitarity). An operator U is called unitary iff

UU† = 1 (2.18)

or equivalently

U = U−1. (2.19)

As the Hamiltonian H is Hermitian and t can be seen to be just a scalar2 we have that the
following holds

Lemma 2.5.14. Let H be Hermitian and t be scalar, then

U = eiHt (2.20)

is unitary.

Proof. Due to the Hermiticity of H we have that(
eiHt

)†
= e−iHt. (2.21)

We continue with

eiHt
(
eiHt

)†
= eiHt−iHt = 1 (2.22)

where the first equality holds due to the Baker-Campbell-Hausdorff formula for exponential op-
erators (for proof see [55]) and the fact that H commutes with itself. By definition 2.5.13, this
concludes the proof.

Now that we have seen that evolution of quantum states generated by a Hamiltonian H is
actually always unitary we could also restate our postulate, in a slightly weaker version, without
involving the notion of time explicitly.

Definition 2.5.15 (Postulate 4’: Evolution revisited). The evolution of a quantum state ρ to a
quantum state ρ̃ is given by

ρ̃ = UρU† (2.23)

where U is an unitary operator.

Since we have so far only talked about single quantum systems the last postulate will tell us
how to compose systems, such that we will be able to describe large multipartite states.

Definition 2.5.16 (Postulate 5: Composition). Let A and B be two quantum systems with as-
sociated Hilbert spaces HA and HB , then composite system is described by a density operator
ρ ∈ End(HA ⊗HB).

Sometimes the shorthand notation HAB = HA ⊗HB will be used.

2The problem of the notion of time in quantum theory is a very complex one that will be discussed in great detail
in chapter 7.
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2.6 Further Definitions

Now that we have seen the postulates of quantum theory that allow us to describe quantum system
let make some further definitions that will prove to be useful as we go along our journey into the
more technical depths of the field.
Let S=(H) := {ρ ∈ P(H) : Tr(ρ) = 1} be the set of all normalised states and S≤(H) := {ρ ∈ P(H) :
0 < Tr(ρ) ≤ 1} be the set quantum states including subnormalised states acting on H. If either S=

or S≤ is meant S will be written.
In order to quantify the distance between quantum states we will use a quantity called fidelity

Definition 2.6.1 (Fidelity). Let ρ and σ be two quantum states then the fidelity is defined as

F (ρ, σ) :=
∣∣∣∣√ρ√σ∣∣∣∣

1
. (2.24)

If however the states we dealing with are subnormalised we need to employ the generalised
fidelity as a measure of distance

Definition 2.6.2 (Generalised fidelity). Let ρ, σ ∈ S≤ then the generalised fidelity is defined as

F (ρ, σ) :=
∣∣∣∣√ρ√σ∣∣∣∣

1
+
√

(1− Trρ)(1− Trσ) (2.25)

In the case that either ρ or σ is normalised the above expression reduces to 2.6.1. Let us continue
with defining properties of linear maps.

Definition 2.6.3 (Positivity). A linear map E ∈ Hom(End(HA),End(HB)) is said to be positive
iff

E(ρ) ≥ 0 ∀ ρ ∈ S. (2.26)

Definition 2.6.4 (Complete positivity). A linear map E ∈ Hom(End(HA),End(HB)) is said to be
completely positive iff

E ⊗ 1C ≥ 0 ∀ ρ ∈ S (2.27)

for any Hilbert space HC .

Definition 2.6.5 (Trace preserving). A linear map E ∈ Hom(End(HA),End(HB)) is said to be
trace preserving iff

Tr (E(ρ)) = Tr (ρ) ∀ ρ ∈ S (2.28)

Definition 2.6.6 (Trace non-increasing). A linear map E ∈ Hom(End(HA),End(HB)) is said to
be trace non-increasing iff

Tr (E(ρ)) ≥ Tr (ρ) ∀ ρ ∈ S. (2.29)

Also we will make use of the partial trace

Definition 2.6.7 (Partial trace). The partial trace of an operator is defined as

TrB(OAB) :=
∑
i

〈iB |OAB |iB〉 (2.30)

where {i}B is any orthonormal basis of HB .

Applied here, this means that ρA ≡ TrB ρAB is the reduced state on system A.

In the following, we will work in units such that c = ~ = kB = 1, if not stated otherwise.
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2.7 Entropies

In this section quantities of information will be discussed in the classical and in the quantum
case. Also results on the possible extension of the quantum conditional mutual information to a
non-asymptotic framework will be presented.

2.7.1 Shannon entropies

Shannon’s groundbreaking work of establishing information theory in a single stroke is intimately
linked to introduction of what today we call the Shannon entropy. Given a random variable X the
Shannon entropy quantifies the information gain achieved by learning the value of X. Formally it
is mostly defined as a function of a probability distribution pX .

Definition 2.7.1 (Shannon entropy). Given a probability distribution pX the Shannon entropy is
defined as

H(X)p = H(pX) := −
∑
x∈X

p(x) log(p(x)). (2.31)

If not otherwise stated log will refer to the logarithm of base two. 3 In the case of dichotomic
random variables and the corresponding binary probability distributions the Shannon entropy solely
depends on a single parameter q := p(0). This motivates the definition of the binary entropy.

Definition 2.7.2 (Binary entropy). Given a binary probability distribution p : {0, 1} → [ 0, 1] the
binary entropy is defined as

H(q) := −q log(q)− (1− q) log(1− q). (2.32)

Continuing the discussion of entropy let us turn to cases where we have more than just one
random variable.

Definition 2.7.3 (Joint entropy). Given a joint probability distribution pXY the joint entropy is
defined as

H(XY )p := −
∑

x∈X ,y∈Y
p(x, y) log(p(x, y)). (2.33)

The joint entropy quantifies the total uncertainty of the random variables X and Y . Asking the
question on how much uncertainty remains about a random X conditioned on knowing the value
of Y leads to the definition of the conditional entropy.

Definition 2.7.4 (Conditional entropy I). Given a joint probability distribution pXY the condi-
tional entropy is defined as

H(X|Y )p := H(XY )p −H(Y )p. (2.34)

3Note that here 0 log(0) = 0.
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Figure 2.1: Venn diagram of the Shannon entropies of a bipartite system [56].

One can also define the conditional entropy by defining what a conditional probability distribu-

tion is. We denote pX|Y (x|y) := pXY (x,y)
pY (y) the conditional distribution of X conditioned on knowing

Y , where pY is the Y-marginal of pXY .

Definition 2.7.5 (Conditional entropy II). Given a joint probability distribution pXY the condi-
tional entropy is defined as

H(X|Y )p :=
∑
y∈Y

pY (y)H(pX|Y ) (2.35)

The mutual information is a measure that quantifies how much X and Y have in common.

Definition 2.7.6 (Mutual Information). Given a joint probability distribution pXY the mutual
information is defined as

I(X : Y )p := H(X)p +H(Y )p −H(XY )p. (2.36)

Using definition 2.7.4 one can see that I(X : Y )p = H(X)p − H(X|Y )p, elucidating the con-
nection between the mutual information and the conditional entropy. The mutual information can
also be defined for the case where one conditions on knowing a third variable Z.

Definition 2.7.7 (Conditional Mutual Information). Given a joint probability distribution pXY Z
the conditional mutual information is defined as

I(X : Y |Z)p := H(X|Z)p +H(Y |Z)p −H(XY |Z)p. (2.37)
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Figure 2.2: Venn diagram of the conditional Shannon entropies of a tripartite system [56].

2.7.2 Von Neumann entropies

One can generalise the definitions given above for the classcial case to the quantum case. While so
far we have used probability distributions we will now start to define this quantities as functions of
the density operator (see definition 2.5.1). Although the Shannon entropy as introduced above can
be seen as a special case of Von Neumann’s entropy that we are going to introduce now, it came
nearly two decades later [57, 26].

Definition 2.7.8 (von Neumann entropy). The Von Neumann entropy is defined as

H(ρ) := −Trρ log ρ. (2.38)

The Von Neumann entropy bears the same symbol as the Shannon entropy, namely H. This can
be a little confusing, is justified though. The Von Neumann entropy can be expressed as Shannon
entropy of the spectrum of the density operator ρ, i.e.

H(ρ) = −
∑
i

λi log λi (2.39)

where the λi are the eigenvalues of ρ. This means that we can encode any probability distribu-
tions into the diagonal elements of the density operator. The Von Neumann entropy therefore is a
genuine generalisation of the Shannon entropy. For the sake of clarity and comprehensibility in the
following we will use the first letters of the alphabet A,B,C, . . . in order to label quantum systems
and the last letters . . . , X, Y, Z if we speak of strictly classical systems. Moreover, H(A)ρ := H(ρA)
and H(AB)ρ := H(ρAB) will be the convention we will stick to in the following.
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We can also define a quantum version of the conditional entropy in complete analogy to the classical
case.

Definition 2.7.9 (Conditional von Neumann entropy). Given a bipartite quantum state ρAB the
conditional Von Neumann entropy is defined as

H(A|B)ρ := H(AB)ρ −H(B)ρ. (2.40)

While the classical conditional entropy H(X|Y )p is a strictly non-negative quantity its quantum
generalisation is not. We will see later on in this thesis that this property can be used in order to
detect entanglement.

Mutual information measures are widely used to characterise the correlations in quantum many-
body systems as well as in classical systems.

Definition 2.7.10 (von Neumann Mutual Information). Given a bipartite quantum state ρAB the
von Neumann mutual information is defined as

I(A : B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ. (2.41)

Posing the question on how much can be deduced from a system about a second system con-
ditioned on knowing the state of a third system leads to the definition of the conditional mutual
information. In the setting where one is provided with i.i.d. resources this is a well studied quantity
and it has been shown that for the case of quantum state redistribution it characterises the optimal
amount of qubits needed in order to accomplish this task [58]. Furthermore it is the basis for the
squashed entanglement, an important quantity in entanglement theory [59]

Definition 2.7.11 (Quantum Conditional Mutual Information). Given a tripartite quantum state
ρABC the quantum conditional mutual information is defined as

I(A : B|C)ρ := H(AC)ρ +H(BC)ρ −H(C)ρ −H(ABC)ρ. (2.42)

Markov states in the context of quantum information theory are defined via the quantum con-
ditional mutual information.

Definition 2.7.12 (Markov states). The set of all Markov states is defined as

M := {σ ∈ D(H) : I(A : B|C)σ = 0}. (2.43)

The condition that σ fulfills strong subadditivity with equality (i.e. I(A : B|C)σ = 0) is
equivalent to the statement that there exists a decomposition of system C as

HC =
⊕
i

HCLi ⊗HCRi (2.44)

into a direct sum of tensor products such that

σABC =
⊕
i

piσACLi ⊗ σCLi B , (2.45)

where {pi} is some probability distribution (see Ref. [60]).

Many of the well-known quantities of information in the asymptotic framework of quantum
information can be written in terms of the relative entropies.
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Definition 2.7.13 (Quantum relative entropy). Let ρ ∈ S≤(H) and σ ∈ S(H), then the quantum
relative entropy is defined as

D1(ρ‖σ) := Tr [ρ (logρ− logσ)] . (2.46)

Recalling the definitions for the von Neumann entropy H(A)ρ, the conditional von Neumann
entropy H(A|B)ρ and the von Neumann mutual information I(A : B)ρ, it is straightforward to
check that

H(A)ρ = −Tr ρ log ρ (2.47)

= −D1(ρA‖1A), (2.48)

H(A|B)ρ = H(AB)ρ −H(B)ρ (2.49)

= −min
σB

D1(ρAB‖1A ⊗ σB) (2.50)

and

I(A : B)ρ = H(A)ρ +H(B)ρ −H(AB)ρ (2.51)

= min
σB

D1(ρAB‖ρA ⊗ σB). (2.52)

2.7.3 Rényi entropies

A quantity that is used to generalise quantities of information to a situation where i.i.d. (iden-
tically and independently distributed) resources are not available is the α-Rényi relative entropy
[61, 62, 63]. Information quantities in terms quantum Rényi relative entropies have found applica-
tions in various operational tasks [65, 66, 67]. Note that the α-Rényi relative entropy in form it will
be defined below actually goes back to Petz [64], we will still drop his name after the definition for
the sake of simplicity.

Definition 2.7.14 ((Petz’) Quantum α-Rényi relative entropy). Let α ∈ (0, 1) ∪ (1,∞) and let
ρ, σ ∈ S≤(H) with supp ρ ⊆ supp σ. Then the (Petz’) quantum Rényi relative entropy of order α is
defined as

Dα(ρ‖σ) :=
1

α− 1
log Tr

(
ρασ1−α) . (2.53)

Note that in the limit α→ 1 we recover the relative entropy (2.46) and that Dα is a monotoni-
cally increasing function in α. Moreover we define the 0-relative entropy (Dmin in Ref. [61]), which
naturally appears in binary hypothesis testing when the probability for type I errors is set to zero.

Definition 2.7.15 (Quantum 0-relative entropy). Let ρ ∈ S≤(H) and σ ∈ P(H), then the quantum
0-relative entropy is defined as

D0(ρ‖σ) := lim
α→0+

Dα(ρ‖σ) = −log TrPρ σ, (2.54)

where Pρ denotes the projector onto the support of ρ.
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On the other end of the spectrum we have the quantum relative max-entropy, it corresponds to
the case α→∞ when defining the α-Rényi relative entropy in a slightly different way [68].

Definition 2.7.16 (Quantum relative max-entropy). Let ρ ∈ S≤(H) and σ ∈ P(H), then the max
relative entropy is defined as

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ eλσ} . (2.55)

One can now use the Rényi relative entropies for the definition of entropies for α 6= 1, analogously
to the Von Neumann case.

Definition 2.7.17 (Quantum α-Rényi entropies). Let α ∈ (0, 1) ∪ (1,∞) and let ρA ∈ S≤(HA).
Then the quantum Rényi entropy of order α is defined as

Hα(A)ρ := Hα(ρA) = Dα(ρA‖1A) . (2.56)

Considering bipartite system we can define the conditional versions of the quantum α-Rényi
entropy.

Definition 2.7.18 (Quantum conditional α-Rényi entropies). Let α ∈ (0, 1) ∪ (1,∞) and let
ρAB ∈ S(HAB). Then the quantum conditional Rényi entropy of order α is defined as

Hα(A|B)ρ := sup
σB

−Dα(ρAB‖1A ⊗ σB) . (2.57)

As for the case of the quantum conditional 0/max-entropies we have that one is defined by the
other’s relative entropy.

Definition 2.7.19 (Quantum conditional 0/max-entropies). Let ρAB ∈ S(HAB), then the quantum
min/max-entropy is defined as

H0/max(A|B)ρ := sup
σB

−Dmax /0(ρAB‖1A ⊗ σB) . (2.58)

There exist a lot more types of entropies and divergencies that have been developed in the non-
i.i.d. context and these are connected in manifold ways. This can be quite confusing and stating
all different definitions and relations to each other would go way beyond the scope of this thesis.
The whole zoo of entropies has been visualised in an appealing way in [69].
The quantum mutual information measures in the non-asymptotic setting for the different values
of α are given in the following way.

Definition 2.7.20 (Quantum α-Rényi mutual information). Let α ∈ (0, 1)∪ (1,∞) and let ρAB ∈
S(H). Then the quantum Rényi mutual information of order α is defined as

Iα(A : B) := inf
σB
Dα(ρAB‖ρA ⊗ σB) . (2.59)

Here, the analogies stop, as it is becomes a non-trivial questions how to generalise the quantum
conditional mutual information to the non-i.i.d. setting. Here the recent years have brought a lot
of insights to these questions [70, 71].



2.7. ENTROPIES 21

2.7.4 How not to

At the time of writing [7] it was still an open question how to generalise the quantum conditional
mutual information to the non-i.i.d. setting. In this subsection we will follow the proof of above
cited article in order to show how not to do it. To follow the proof we need to introduce some con-
cepts and definitions. The proof will be done by considering the set of all Markov states i.e. states
for which the quantum conditional mutual information is zero. An approach where one minimises
the quantum α-Rényi relative entropies over this set may seem reasonable as it can be shown that
for the case of Dmin it leads to a non-negative quantity that fulfills a data-processing inequality and
a duality relation, as one would expect from a generalisation of the quantum conditional mutual
information. However this approach fails as will be shown now.

This failure arrises from the fact that in the case of the totally antisymmetric state this ap-
proach leads to a constant lower bound for the whole range of the parameter α while the quantum
conditional mutual information goes to zero for large dimensions (with O( 1

d )). Thus this approach
cannot produce a quantity that in general lower bounds the quantum conditional mutual informa-
tion.
In order to present the promised results we first need the definition of the totally antisymmetric
state.

Definition 2.7.21 (Totally antisymmetric state). The totally antisymmetric state as is defined as

γd :=
2

d(d− 1)
PΛ (2.60)

where PΛ denotes the projector onto the antisymmetric subspace Λ2(Cd) in (Cd)⊗2 .

In Ref. [72] the authors show that the quantity

∆(ρABC) := inf
σABC∈M

D1(ρABC‖σABC) (2.61)

poses an upper bound to the quantum conditional mutual information, i.e.

I(A : B|C)ρ ≤ ∆(ρABC) (2.62)

and there exist certain states for which the inequality becomes an equality. Along these lines we
will show that it is not possible to generalise the quantum conditional mutual information to the
non-i.i.d. setting by optimising quantum Rényi relative entropies over the set of all Markov states.
This will be done in the following by the construction of a specific example, where this approach
leads to an upper bound of the quantum conditional mutual information for any value of α. Note
that this approach may seem reasonable, as it can be shown that

∆min(ρABC) := inf
σABC∈M

−logF 2(ρABC , σABC) (2.63)

shares three main properties with the aforementioned. Namely these are non-negativity, non-
increasing under data processing and duality for quadripartite pure states [73].

Generalising above approach with the quantum Rényi relative entropies, we have that for α ≥ 0

∆α(ρABC) := inf
σABC∈M

Dα(ρABC‖σABC). (2.64)
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Our result now reads as follows

Theorem 2.7.22. Let Pk be the projector onto the antisymmetric subspace Λk(Cd) in (Cd)⊗k with
HA ∼= HB ∼= Cd being the first two tensor factors and let ρABC := Pk

dk
, where dk := dim Λk(Cd) =(

d
k

)
. Then,

∆0(ρABC) ≥ log

√
4

3
(2.65)

Proof. We start out from the definition of the left-hand side making use of the monotonicity under
CPTP maps of the quantum Rényi relative relative entropies by tracing out subsystem C.

∆0(ρABC) = inf
σABC∈M

lim
α→0+

Dα(ρABC‖σABC) (2.66)

≥ inf
σAB∈S

lim
α→0+

Dα(γd‖σAB) (2.67)

= inf
σAB∈S

−log Tr PγdσAB (2.68)

Due to the special form of the Markov states (see eq. 2.45) we have that the optimisation in the last

two lines runs over the set of all separable states S = {σAB ∈ D(HAB) : σAB =
∑
j pjσ

(j)
A ⊗ σ

(j)
B }

for some probability distribution {pj}. Moreover it is clear that ρAB = TrCρABC equals the totally
antisymmetric state γd in (Cd)⊗2.
Since the totally antisymmetric state γd is invariant under the action g ⊗ g where g is unitary, we
can restrict the optimisation problem to states obeying the same symmetry. It has be shown that

the expression in the last line has a constant lower bound equal to log
√

4
3 (see proof of Corollary

3 in [74]).

We can now directly relate the quantum conditional mutual information to ∆0 for the state
ρABC defined above.

Corollary 2.7.23. Let ρABC = Pk
dk

as above then

∆0(ρABC) > I(A : B|C)ρABC . (2.69)

for k = dd+1
2 e and d ≥ 27.

Proof. An explicit evalution of the right-hand side (see Ref. [74]) gives us

I(A : B|C)ρABC =

{
2 log d+2

d if d is even

log d+3
d−1 if d is odd.

(2.70)

Finally a simple numerical calculation shows that

log

√
4

3
>

{
2 log d+2

d if d is even

log d+3
d−1 if d is odd

(2.71)

is the case for d ≥ 27.
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This implies that the relative gap between ∆0 and the quantum conditional mutual information
can be made arbitrarily big by scaling up the dimension, as

∆0(ρABC) ≥ const. (2.72)

while

I(A : B|C)ρABC ≤
4

d− 1
= O

(
1

d

)
(2.73)

when k = dd+1
2 e. Observing that the quantum Rényi relative entropies monotonically increase

in α it follows that

Corollary 2.7.24. Let ρABC = Pk
dk

as above and α > 0, then

∆α(ρABC) > I(A : B|C)ρABC . (2.74)

for k = dd+1
2 e and d ≥ 27.

As in the case of Rényi generalisations of some quantities of information the property of conver-
gence to their von Neumann equivalents in the i.i.d. -limit emerges from an additional limit taken
in the smoothing parameter, we show here that our results above also hold in a regularised and
smoothed version.
First we need to define a metric on S≤, which we choose to be the purified distance (introduced in
Ref. [65]).

Definition 2.7.25 (Purified distance). The purified distance is defined as

P (ρ, σ) :=
√

1− F 2(ρ, σ). (2.75)

Furthermore two states ρ and σ will be called ε-close if and only if P (ρ, σ) ≤ ε. This leads to
the definition of the ball of ε-close states for given state ρ.

Definition 2.7.26 (ε-ball). The ball of ε-close states around ρ ∈ S≤ is defined as

Bε(ρ) := {ρ′ ∈ S≤ : P (ρ, ρ′) ≤ ε}. (2.76)

Now we can define the smoothed version of the ∆0-quantity

∆ε
0(ρ) := max

ρ̃∈Bε(ρ)
∆0(ρ̃) (2.77)

One can immediately observe that

∆ε
0(ρ) ≥ ∆0(ρ) ∀ 0 ≤ ε < 1 (2.78)

holds. As for the case of regularisation we need to generalise our statements to the case where
number of available copies of the given state goes to infinity. Therefore we define the regularised
version of ∆0, i.e.

∆∞0 (ρ) := lim
n→∞

1

n
∆0(ρ⊗n) = lim

n→∞

1

n
inf
σ∈M

D0(ρ⊗n‖σ). (2.79)

Thus we need a statement more general than Theorem 1, which reads as follows;
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Theorem 2.7.27. Let ρABC = Pk
dk

as above then

∆0(ρ⊗nABC) ≥ n log

√
4

3
. (2.80)

Proof. Tracing out system C we have that

∆0(ρ⊗nABC) = inf
σABC∈M

lim
α→0+

Dα(ρ⊗nABC‖σABC) (2.81)

≥ inf
σAB∈S

lim
α→0+

Dα(γ⊗nd ‖σAB) (2.82)

= inf
σAB∈S

−log Tr P⊗nγd σAB (2.83)

The observation that the last line has a lower bound given by n log
√

4
3 (see Lemma 9 and 12 in

Ref. [74]) concludes the proof.

Putting together the observations Theorem 2.7.27 and Equation (2.78) we can conclude that
the results achieved for ∆0 also hold for its smoothed and regularised version, hence establishing

∆∞,ε0 (ρABC) := lim
n→∞

1

n
∆ε

0(ρ⊗n) ≥ const. ∀ 0 ≤ ε < 1. (2.84)



Chapter 3

Bases

As far as we know quantum theory provides the most accurate description of the world as we
perceive it with the help of the most advanced technological measurement apparati. In the last
chapter, we have provided the necessary notation and definitions in order to understand what we
will discuss in the following. We have seen that already for stating the first postulate of quantum
theory 2.5.1 we need the concept of a basis for our underlying Hilbert space. The basis that we use
to describe a state (e.g. computational,. . . ) is the connection to the physical world, in the sense
that as physicists we have to find the correspondence between the mathematical object (i.e. a set of
vectors or operators) and the observable phenomenon (e.g. position/momentum, direction of spin,
polarisation,. . . ). Apart from this, the right choice of basis can also save us a lot of time or effort
when trying to solve a problem. There are bases that have properties that are especially useful and
some come in very handy when parametrising states. These topics will be discussed in this chapter.
Furthermore we will introduce a new basis with advantageous properties [8].

3.1 Bloch representations

The Bloch representation is an essential tool for the analysis of characteristic features of quantum
systems. Initially introduced by Bloch [75] for qubit systems, it has since found its way in the heart
of quantum information theory and quantum theory lectures. It gives (at least for the qubit case)
a very comprehensive way to understand the phase space of qubit systems in a geometrical fashion,
as we will see in the following. Aside the pedagogical upsides it has been adopted as a technical
tool in a wide range of settings (see e.g. [76, 77, 78]). Also it has been generalised for multipartite
and higher dimensional systems.

As the Bloch representation uses the expectation values of a complete set of measurements in or-
der to define the density operator, it can help in finding solutions for Hamiltonian evolutions [79] as
well as in entanglement theory [80, 81, 82, 83, 84, 85, 86], which will be discussed in the next chapter.

Simply put, the Bloch representation is a decomposition of the density matrix with help of a
complete operator basis. For the case of two-level systems the Pauli matrices are the generic choice.

25
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Definition 3.1.1 (Pauli matrices). The Pauli Matrices, including the Identity σ0, are defined as

σ0 := 1 =

(
1 0
0 1

)
(3.1)

σ1 :=

(
0 1
1 0

)
(3.2)

σ2 :=

(
0 −i
i 0

)
(3.3)

σ3 :=

(
1 0
0 −1

)
. (3.4)

(3.5)

In Dirac notation we can express them as

σ0 = |0〉 〈0|+ |1〉 〈1| (3.6)

σ1 = |0〉 〈1|+ |1〉 〈0| (3.7)

σ2 = −i |0〉 〈1|+ i |1〉 〈0| (3.8)

σ3 = |0〉 〈0| − |1〉 〈1| (3.9)

(3.10)

Sometimes the Pauli matrices are labelled with x, y, z instead of numbers. Together with the
identity σ0 they form a complete basis for all complex self-adjoint 2× 2 matrices. Therefore we can
write down any qubit state in terms of the Pauli matrices, i.e. its Bloch decomposition. For qubit
states this leads the following very beautiful single-letter formula.

Definition 3.1.2 (Bloch decomposition). Let ρ be a quantum state of dimension d = 2, i.e. a
qubit, then we call

ρ =
1

2
(1+ ~n~σ) , (3.11)

the Bloch decomposition of ρ, where the Bloch vector ~n ∈ R3 fullfills |~n| ≤ 1. Moreover, ~σ is
the vector with the Pauli matrices as its elements

~σ :=

 σ1

σ3

σ3

 . (3.12)

From this beautiful parametrisation of the qubit state space one directly gets a intuitive geo-
metrical picture. Namely, all possible Bloch vectors ~n form a ball with the maximally mixed state
ρ~0 = 1

2 in its origin. The Bloch sphere, formed by ~n with unit length, contains all pure qubit states.
This is represented in figure 3.1.

One can take this approach further and generalise it to qudits (quantum systems of dimension d).
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n

|0>

|1>

Figure 3.1: Bloch picture: The state space of all possible qubit states can be represented by the
Bloch ball, which is formed by all possible Bloch vectors ~n. [56]

For this purpose, one needs a complete basis for all density matrices acting on a d-dimensional
Hilbert space Hd which furthermore has to contain elements that are orthogonal and traceless.

Definition 3.1.3 (Generalised Bloch decomposition). Let ρ be a quantum state of dimension d,
i.e. a qudit, then we call

ρ =
1

d

1+

d2−1∑
i=1

ni Bi

 , (3.13)

the generalised Bloch decomposition of ρ, where we have that the orthogonal and traceless op-
erators Bi together with B0 = 1 form a complete basis for S=(Hd). The elements of the generalised
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Bloch vector ni are given by

ni := Tr (ρBi) . (3.14)

Unfortunately a geometrical understanding of the state space in terms of the (d2−1)-dimensional
generalised Bloch vector (formed by the ni) is very hard for d ≥ 2. Already in the qutrit case, i.e.
d = 3, we are left with very intricate structures [87, 88, 89], whose complexity grows with increasing
dimension.

As can be readily checked, the Pauli matrices are unitary and Hermitian. For higher dimen-
sional systems, complete operator bases that come with both features do not exist. Furthermore,
the Bloch vector corresponding to non-Hermitian operator bases will in general not be real but
also contain complex entries. Such choices, as e.g. Heisenberg-Weyl operators, have been explored
in the past [77, 90, 91, 92, 93, 94]. So far, the generalised Gell-Mann matrices, generators of the
special unitary group SU(d), are the most commonly used in such a case. While they are very
convenient for some applications (e.g. representing high dimensional spin systems [78, 95]), they
perform poorly at others (e.g. where basis elements with full rank are needed). This chapter
will include the introduction of a recently proposed Hermitian generalisation of the Pauli matrices
namely the Heisenberg-Weyl observables (HWO) [8].

3.2 Mutually unbiased bases

In the Bloch picture (see figure 3.1), taking states corresponding to antipodal points on the sphere
results in a basis for the Hilbert space H2. Constructing another basis by taking Bloch vectors that
are orthogonal to the initial ones, results in two bases that are connected by an interesting relation.
Namely they are mutual unbiased, the overlaps of their elements are the minimal possible for such
a case. This means that if one measures in one basis, there is minimal information about outcomes
in the second basis or conversely measuring in two such basis gives maximal information about the
state. Such relation between bases is not limited to only two-dimensional spaces, but can be found
in any dimension. So let us now look at this very prominent and important property that bases
can have, namely mutual unbiasedness. Let us directly start off with the definition of the property.

Definition 3.2.1 (Mutual Unbiased). Sets of basis vectors {|vki 〉} are called mutually unbiased, iff

they are both orthonormal 〈vki |vkj 〉 = δij and their overlaps are unbiased |〈vki |vk
′

j 〉|2 = 1
d .

Mutual unbiased bases (MUBs) can be used for an efficient tomography [96] and cryptography
protocols [97]. They also have a strong connection to Quantum Random Access Codes [98]. Due
to their wide range of applicability of this property it constitutes an interesting field for future
research since also there are still a lot of open questions regarding MUBs in higher dimensions.

In the next chapter we will use the properties of MUBs in order to detect and quantify entan-
glement. It shall be remarked that it is still an unsolved problem how many MUBs exist in general
(the smallest example being d = 6). We however know that in all prime power dimensions exactly
d + 1 such bases exist. For a more in depth review and a discussion of further applications please
see [99].
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3.3 Gell-Mann matrices

The commonly known operator basis for describing qudit density matrices are the generalised Gell-
Mann matrices (GMM). They constitute a Hermitian generalisation of the Pauli matrices introduced
in definition 3.1.1.

Definition 3.3.1 (Generalised Gell-Mann matrices). The generalised Gell-Mann matrices for di-
mension d are defined by three sets: The symmetric set is given by

GSjk :=

√
d

2
(|k〉 〈j|+ |j〉 〈k|) , (3.15)

the antisymmetric set is given by

GAjk := −i
√
d

2
(|k〉 〈j| − |j〉 〈k|) (3.16)

and the diagonal set is given by

GDl :=

√
d

l(l + 1)

 l∑
j=1

|j〉 〈j| − l |l + 1〉 〈l + 1|

 (3.17)

where 1 ≤ l ≤ d−1 and 1 ≤ j < k ≤ d holds. To achieve a full orthogonal basis we add the identity
operator as GD0 := 1d to the diagonal set.

For d = 2 the GMM reduce to the Pauli matrices.

3.3.1 Spectrum

We want to have a quick look at the spectrum of GMM, specifically the largest eigenvalue for the
squares of the GGM as such expressions will come in handy later on. The largest eigenvalue for
the squares of matrices of the three sets can be straightfoward computed as

maxλ
(
(GSjk)2

)
= maxλ

(
(GAjk)2

)
=
d

2
(3.18)

maxλ
(
(GDl )2

)
=

dl

l + 1
. (3.19)

Next we want to consider a matrix M that is decomposable into a tensor product whose elements
are GGM. For such a matrix M we can calculate the largest eigenvalue of its square by using above
equations

maxλ
(
M2
)

=

(
d−1∏
l=1

(
dl

l + 1

)αl)
×
(
d

2

)β+γ

(3.20)

where we have that αl, β and γ are the numbers specifying how often elements of the diagonal
set, the antisymmetric set and the symmetric set appear in the tensor product that constitutes M ,
respectively.
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3.4 Heisenberg-Weyl observables

In this section we will define the discrete phase-space displacement operators or Heisenberg-Weyl
operators and then derive a new complete Hermitian operator basis from them [9].

Definition 3.4.1 (Phase-space operators). We define the operator X = e−i2πP/d by the action
X |j〉 = |j + 1 mod d〉 and the operator Z = ei2πQ/d by Z |j〉 = ei2πj/d |j〉, where Q and P are the
discrete position and momentum operators, respectively, describing a d× d grid.

X and Z are in general non-commuting operators obeying the following relation

ZlXm = XmZlei2πlm/d. (3.21)

We can use these operators to define unitaries that act as discrete displacements on the grid.

Definition 3.4.2. (Displacement operators) Let D(l,m) = ZlXme−iπlm/d.

One of the most convenient properties of the displacement operators defined above is their
completeness, i.e. they form a complete non-Hermitian basis. As one can easily check via relation
(3.21) the displacement operators fulfill the orthogonality condition

Tr{D(l,m)D†(l′,m′)} = dδl,l′δm,m′ . (3.22)

As we have seen in the last section every density matrix can be represented via a decomposition
in a complete operator basis. Such that the displacement operator also give us the opportunity to
do so,

ρ =
1

d

d2−1∑
l,m=0

Tr{ρD(l,m)}D†(l,m) :=
1

d
(1+ ~ξ · ~D†). (3.23)

Here the Bloch representation via the vector ~ξ becomes visible. As the displacement operators
are not Hermitian the d2− 1 entries of ~ξ are in general complex and therefore do not correspond to
the outcomes of physical measurements . So the next step is to a find d2 − 1 Hermitian operators
whose expectation values we can use to fully describe an arbitrary quantum state of dimension d.

This goal can be achieved with the following definition

Definition 3.4.3. (Heisenberg-Weyl observables) Let Q(l,m) = χD(l,m) + χ∗D†(l,m), where

χ =
(1± i)

2
.

This operators fulfill the following orthogonality condition

Tr{Q(l,m)Q(l′,m′)} = dδl,l′δm,m′ . (3.24)

Together with the identity identity matrix, Q(0, 0) = 1d, the Heisenberg-Weyl obervables now form
a complete orthogonal traceless Hermitian operator basis.

We can therefore decompose an arbitrary quantum state ρ of dimension d in the following form

ρ =
1

d

d2−1∑
l,m=0

〈Q(l,m)〉Q(l,m), (3.25)
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where the expression 〈Q(l,m)〉 is strictly real due to the Herminicity of the Heisenberg-Weyl ob-
servables.

Note that the Heisenberg-Weyl obervables reduce to the Pauli matrices for d = 2. Let us now
have a look what happens if we extend the definition of the Heisenberg-Weyl observables to the
infinite dimensional case.

3.4.1 Infinite dimensional limit

We can introduce a compact notation for the Heisenberg-Weyl observables to show that they can
be systematically extended to the continuous limit of infinite dimensional systems. This is impor-
tant as operational discretisations for continuous variable systems are of great value for quantum
information processing tasks [100, 101].

We will do so by introducing the so called phase-space displacement amplitude,

α :=

√
π

d
(m+ il). (3.26)

We can use α to define a real vector in a two dimensional space α := (αR, αI), such that we can
rewrite Q(α) as

Q(α) := Q(

√
d

π
αI ,

√
d

π
αR), (3.27)

where S := {α : αI =
√

π
d l, αR =

√
π
dm}.

Now the decomposition of a quantum state ρ is given by

ρ =
1

d

(
1+

∑
α∈S
〈Q(α)〉Q(α)

)
. (3.28)

To investigate the limit d → ∞ we consider x̂ = Q
√

2π/d and p̂ = P
√

2π/d as the position

and momentum operators, such that Xm ≡ e−ixp̂ indicates position displacement by x = m
√

2π/d

and Zl ≡ eipx̂ displaces the momentum by p = l
√

2π/d. As a sanity check we observe that
the Heisenberg commutation relation for position and momentum of a continuous variable system
[x̂, p̂] = i holds in the limit d → ∞ Now we can reformulate the definition of the displacement
operators in the following fashion

D(p, x) := eipx̂e−ixp̂e−ixp/2. (3.29)

To continue our exploration of the continuos limit we will need the so called Baker-Campbell-
Hausdorff formula for exponential operators (for proof see [55]), i.e. given that [A, [A,B]] = 0 =
[B, [A,B]] we have that

feA+B = eAeBe−[A,B]/2. (3.30)

As this is the case here we can rewrite equation (3.29) as

D(p, x) = eipx̂−ixp̂, (3.31)
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which is only valid in the limit of infinite dimension, i.e. d→∞.

With help of the creation (annihilation) operators of a bosonic mode a†(a) we can write

D(α) = eαa
†−α∗a, (3.32)

This leads to the following orthogonality condition for the infinite dimensional displacement oper-
ators

Tr{D†(α)D(α′)} = πδ2(α− α′), (3.33)

such that we get

Tr{Q(α)Q(α′)} = πδ2(α− α′), (3.34)

as the continuous analog of (3.24).

We observe that the replacement
1

d

∑
α →

1

π

∫
d2α characterises the discrete-continuous tran-

sition as we have shown that the Heisenberg-Weyl observables presented in the last section for
discrete systems can also be extended to continuous variable systems.

3.4.2 Anti-commutativity

A distinctive feature of the Pauli operators are their commutation relations, namely they all anti-
commute mutually. As we will see in the next chapter this makes them useful in the task of
entanglement detection. Here we will investigate the anti-commutation relation of the above intro-
duced Heisenberg-Weyl observables. From the equation (3.21) and the discussion on the infinite
limit of these observables we get that

D(α)D(α′) = ei2α×α
′
D(α′)D(α) , (3.35)

holds for the discrete as well as the continouos displacement operators. We also have that Im(αα′∗) =
α × α′ which allows us to conveniently characterise the commutativity and anti-commutativity
among all basis elements. We can observe that for any α and α′ such that

|α× α′| = π

2
(2n+ 1) ≤ π(d− 1)2

d
, (3.36)

we get anti-commutation and therefore also anti-commutation for the corresponding pair of Heisenberg-
Weyl observables, i.e.

{Q(α),Q(α′)} = 0. (3.37)

On the other hand for any α and α′ such that

|α× α′| = πn (3.38)

we get commutativity. As we are more interested in the anti-commutativity for reasons that will be-
come clear to reader in the next chapter, we end the discussion on commutativity of the Heisenberg-
Weyl observables here.
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Continuing our investigation of the anti-commutativity in the discrete case, we get the following
relation

|m′l −ml′| = d(2n+ 1)/2 ≤ (d− 1)2. (3.39)

This leads to an interesting observation, namely that strict anti-commutativity between Heisenberg-
Weyl observables can only hold in odd-dimensional systems. The reason behind this is simple. The
right hand side of equation (3.39) is an integer only in the case that d is even while the left hand
side is always integer.

3.4.3 The maximal set

Here we will prove that the cardinality of the maximal set of pairwise anti-commuting operators in
the HW basis is at most three. The proof was given by Prof. Otfried Gühne during discussions on
the topic of [9] and is presented in the Appendix therein. The outline is as follows: consider a set
of four observables in the HW basis that are pairwise anti-commuting and then show that such a
set cannot exist.
The first step of the proof is to parametrise the four observables in the set by two-dimensional
real vectors ~A, ~B, ~C and ~D, describing the displacement in phase space. The assumption of anti-
commutativity then gives us six conditions on the vectors, the first one being

| ~A× ~B| = k1
π

2
(3.40)

where k1 is an odd integer. The other five conditions are analogous, with odd numbers k2, . . . , k6.
Taking all six conditions into account implies that the following equation has to be satisfied

k1k6 + k2k5 − k3k4 = 0. (3.41)

This however is impossible as all ki are odd.

3.4.4 Spectrum

Let us have a short look at the spectrum and the maximum eigenvalue of the Heisenberg-Weyl
observables. We can easily compute the expectation value of a Heisenberg-Weyl observable squared
with √

〈Q2(l,m)〉 =
√

1 + Im〈D(2l, 2m)〉. (3.42)

From the Unitarity of the displacement operators we have that their eigenvalues are bounded by 1.
Therefore it is enough to look at the imaginary part, such that we get√

〈Q2(l,m)〉 ≤ |qmax| ≤
√

2. (3.43)

if we take qmax to be the maximum eigenvalue.
As the Heisenberg-Weyl observables reduce to the Pauli operators for the case d = 2 we have that
ImD(2l, 2m) = 0. Going to higher dimensions we see that ImD(2l, 2m) is non-zero. We can still
bound the maximum eigenvalue by

√
2. This means that the absolute values of the eigenvalues of√

Q2(l,m) for all Heisenberg-Weyl observables are given by

|qn| =
√

1 + sin
4πn

d
(3.44)

with n = 0, · · · , d− 1.
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Chapter 4

Entanglement

As already mentioned in the beginning of the last chapter the story of entanglement starts with
Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) and their article that was published in
1935 [30]. They were so baffled by the phenomenon that they concluded from its mere existence that
quantum theory must be incomplete. This line of reasoning was later dubbed the ’EPR paradox’,
fortunately for us a paradox is only seemingly contradictory. It was however not those three who
gave the phenomenon the name by which we know it today. It was Schrödinger who wrote a letter
to Einstein using the german word ’Verschränkung’ to describe the, at this point very strange,
correlations between two particles. He then continued to publish a seminal paper on the topic,
using entanglement as an english translation. In this work he already recognises the importance of
the concept for the foundation of quantum theory [102], describing the phenomenon as follows:

Another way of expressing the peculiar situation is: the best possible knowledge of a
whole does not necessarily include the best possible knowledge of all its parts, even
though they may be entirely separate and therefore virtually capable of being ’best
possibly known’, i.e., of possessing, each of them, a representative of its own. The
lack of knowledge is by no means due to the interaction being insufficiently known - at
least not in the way that it could possibly be known more completely - it is due to the
interaction itself.

This describes well what was so discomforting to many physicists at that time. Namely, they
were not willing to accept that knowledge of the parts did not automatically imply knowledge of the
whole. They saw a need for ’hidden variables’ that would explain this peculiar feature of quantum
theory. While Grete Hermann’s work went unnoticed, many soothed themselves with Niels Bohr’s
response to the EPR article [103, 104]. In this work he attributes the paradox to the inappropriate
use of the ’detached observer’. Which in general is a valid and interesting point [105, 106], but in
this case just led to a three decade long silence on the topic.

As discussed already it was up to John Bell to ignite the interest on this matter of quantum
correlations. Although entanglement does not allow us to communicate superluminaly, we know
today that entanglement is the key resource that takes quantum communication beyond the clas-
sically possible. Ranging from secure key distribution [42] to super-dense coding [107] it has found

35
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application, it even improves communication capacities in a general sense [108]. Not only commu-
nication, entanglement pops up in nearly all quantum information processing tasks when we want
to surpass the limits of classical physics.

So let us dive into the matter with the mathematical tools that we have acquired so far. En-
tanglement is actually commonly not defined directly, but through the absence of separability. So
let us define what we mean by that.

Definition 4.0.1 (Separable states). Given a bipartite quantum state ρAB it is called separable,
iff it can be written as

ρAB =
∑
i

piρ
i
A ⊗ ρiB . (4.1)

That definition in plain english means that we can decompose a separable state into a proba-
bilistic mixture of individually valid marginal quantum states ρiA/B , where the index i labels the
different states. If the state can directly written as product of quantum states on each subsystem,
we call it a product state.

Definition 4.0.2 (Product states). Given a n-partite quantum state ρA1...An it is called product
state, iff it can be written as

ρA1...An =

n⊗
i=1

ρAi . (4.2)

Coming back to the topic of interest, we can now defined what an entangled state is.

Definition 4.0.3 (Entangled states). Given a bipartite quantum state ρAB it is called entangled,
iff it is not separable.

This means that we cannot write an entangled state as an mixture of product states. The overall
state does not permit a description solely by its parts. While for bipartite qubit systems there exists
an exhaustive arsenal of tools for a complete analysis, as soon as one increases the dimension the
situation gets a lot more difficult. This is what we want to do here as we will especially focus on
high dimensional systems in contrast to systems with two-dimensional degrees of freedom. These
have the advantage that the capacity of each exchanged quantum system is not limited to one bit
of information.

Recent years have seen extensive research devoted to the topic of high-dimensional entangle-
ment, not only proving entanglement for such high dimensional systems [109] but also revealing
its underlying dimensionality [110, 111, 112]. Also the general potential for accommodating many
dimensions has been studied [113, 114, 115, 116, 117]. The technological developments of the last
decades have made high dimensional degrees of freedom available in experiment and therefore al-
lowed for a deeper understanding. For this thesis photonic systems will be of relevance, as they
provide entangled photon pairs that are produced in down-conversion processes. Various different
properties of these photon pairs can be exploited, ranging from entangling their paths in waveguides
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Figure 4.1: Schematic illustration of the structure of the different sets of states, from fully separable
to genuine multipartite entangled. [56]

[110, 118, 119, 120] to their orbital angular momentum [111, 112, 121, 122, 123, 124, 125, 126] or
energy-time bins [127, 128, 129]. The high-dimensionality of the entanglement and the underlying
systems does not only increase the amount of shared information, which increases the efficiency
of known protocols, but also allows for quantum communication at noise ratios that would not be
possible for qubit systems [130, 131, 132, 133, 134].

Before we come to stating what will be presented in this chapter, let us have a quick look at
what happens if we not only increase the dimension but also the number of systems that we con-
sider. This leads to the study of multipartite entanglement. As we are using a negative definition
for entanglement, we will have to introduce a generalised notion of separability.

Definition 4.0.4 (k-separable states). Given a n-partite quantum state ρA1...An it is called k-
separable, iff it can be written as

ρA1...An =
∑
i

pi

k⊗
j=1

ρi
Ãj
. (4.3)

for some partition H = HÃ1
⊗ · · · ⊗ HÃk of the Hilbert space, where k ≤ n.

This means that for a k-separable state we can decompose our state into a probabilistic mixture
of k-partite product states. This leads to a more complex notion of separability and therefore also
entanglement. Only fully separable states do not contain any entanglement.

Definition 4.0.5 (Fully separable states). Given a n-partite quantum state ρA1...An it is called
fully separable, iff it can be written as
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ρA1...An =
∑
i

pi

n⊗
j=1

ρiAj . (4.4)

While in principle every state that is not fully separable contains at least some amount of entan-
glement, the structure of these different forms of entanglement gets very complex. Here we will focus
on states that are not even 2-separable, this states are called genuine multipartite entangled (GME).

Definition 4.0.6 (Genuine multipartite entangled states). Given a n-partite quantum state ρA1...An

it is called genuine multipartite entangled, iff it is not 2-separable.

Now that we have introduced all the necessary notions and concepts, let us proceed with decrib-
ing what will happen in this chapter. In the first part we will discuss how to detect entanglement,
presenting a method that makes use of the advantageous properties of the HWO [8] and constitutes
a generalisation of an already known result [135], later also proven differently in [136, 137]. The
second part will focus on the possibility of quantifying the amount of entanglement shared between
systems. Here a recently developed framework will be presented [9, 10] which makes it possible to
do so only using two different global measurement settings. The framework will be analysed in an
experimental proposal that will also be introduced in this chapter.

4.1 Detection

In this section we will discuss how to detect entanglement.

4.1.1 Anti-commutativity bound

Here, a theorem bounding sums of squared expectation values in the case of small mutual anti-
commutators of the observables is presented and it is shown how this theorem can be used to detect
entanglement. This theorem is a generalisation of the theorem presented in [135], later also proven
differently in [136, 137], that was valid only in the case of dichotomic anti-commuting observables.
Here we will show that this is also possible for observables with an arbitrary spectrum and non-
vanishing anti-commutators.

Theorem 4.1.1 (Anticommutativity Bound). Let {λi}i∈I with the index set I = {1, 2, . . . , d2}
denote an orthonormal self-adjoint basis B of a d-dimensional Hilbert space H and A ⊆ I refer

to a subset of B such that 1
2

√∑
i 6=j∈A〈{λi, λj}〉2 ≤ K. The complement is denoted Ā. Then

the corresponding Bloch vector components ci of any density matrix ρ ∈ H expressed in B as
ρ =

∑
i∈A ciλi +

∑
l∈Ā clλl can be bounded by

∑
i∈A

c2i ≤
maxi∈A〈λ2

i 〉+K
[mini∈A Tr(λ2

i )]
2
. (4.5)
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Proof. Any ρ ∈ H can be expressed in an orthonormal basis B. The chosen basis B can always be
divided into A ∪A, where the set A is at worst trivial. Now consider the observable O

O :=
∑
i∈A

ciλi. (4.6)

As we know that the variance of any observable is positive we have that

(∆O)2 := 〈O2〉 − 〈O〉2 ≥ 0 (4.7)

holds. Inserting the explicit representation of O above we obtain

〈O2〉 = 〈
∑
i∈A

c2iλ
2
i +

∑
i 6=j∈A

cicjλiλj〉 (4.8)

= 〈
∑
i∈A

c2iλ
2
i +

1

2

∑
i6=j∈A

cicj (λiλj + λjλi)︸ ︷︷ ︸
{λi,λj}

〉 (4.9)

≤
∑
i∈A

c2i 〈λ2
i 〉+

√ ∑
i 6=j∈A

c2i c
2
j︸ ︷︷ ︸

≤
∑
i c

2
i

1

2

√ ∑
i6=j∈A

〈{λi, λj}〉2

︸ ︷︷ ︸
≤K

, (4.10)

applying the boundedness of the anti commutator of A. We also know that

〈O〉2 =

(∑
i∈A

ci Tr(ρλi)

)2

(4.11)

=

∑
j∈A

Tr(
∑
i∈A

ciλi)cjλj) +
∑
l∈A

Tr(
∑
i∈A

ciλi)clλl)

2

(4.12)

=

(∑
i∈A

c2i Tr(λ2
i )

)2

(4.13)

by use of orthonormality of B. Summing up above equations yields to the following statements

0 ≤ 〈O2〉 − 〈O〉2 (4.14)

≤
∑
i∈A

(c2i 〈λ2
i 〉+ c2iK)− (

∑
i∈A

c2i Tr(λ2
i ))

2 (4.15)

≤
∑
i∈A

c2i

(
max
i∈A
〈λ2
i 〉 − (

∑
i∈A

c2i ) min
i∈A

Tr(λ2
i )

2
)

+
∑
i∈A

c2iK (4.16)

and thus ∑
i∈A

c2i

(
max
i∈A
〈λ2
i 〉 −

(∑
i∈A

c2i

)
min
i∈A

Tr(λ2
i )

2

)
+
∑
i∈A

c2iK (4.17)

≤
∑
i∈A

c2i

(
max
i∈A
〈λ2
i 〉 −

(∑
i∈A

c2i

)
min
i∈A

Tr(λ2
i )

2

)
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The fact that every element of the sum on the right hand side in 4.17 is positive enforces that

0 ≤ max
i∈A
〈λ2
i 〉 −

(∑
i∈A

c2i

)
min
i∈A

Tr(λ2
i )

2 +K ⇐⇒
∑
i∈A

c2i ≤
maxi∈A〈λ2

i 〉+K
mini∈ATr(λ2

i )
2

(4.18)

which concludes the proof.

The computation of K can still be quite lengthy such that we want to establish a simple upper
bound of the form

K =
1

2

√ ∑
i 6=j∈A

〈{λi, λj}〉2 ≤
1

2

√ ∑
i6=j∈A

‖{λi, λj}‖2∞. (4.19)

Here the Heisenberg-Weyl observables come in handy as

Tr(λ2
i )

2 = d2 ∀λi (4.20)

and we can relate the coefficients ci to the Bloch vector representation, i.e.

ci =
1

d
〈Q(α)〉 . (4.21)

This gives us the desired result in the form of∑
i∈A
〈Q(αi)〉2 ≤ 1 + max

n

(
sin

4πn

d

)
+

1

2

√ ∑
i 6=j∈A

‖{Q(αi),Q(αj)}‖2∞ . (4.22)

Now we can proceed on our path to use anti-commutativity to detect entanglement. The first
step to do so is to pick a set of nonzero Bloch vector entries of a multipartite quantum state with
anti-commuting reductions across the partition one is interested in. This means that the partition
A|Ā and the set β = βA ∪ βĀ with elements τβ = Tr(ρλi ⊗ λj) have that i ∈ βA, j ∈ βĀ and
λi(λj) are arbitrary observables acting on subsystem A(Ā). We can then bound the sum of moduli
of these entries for all states which are product states with respect to the selected partitions in the
form of

Tr(ρA ⊗ ρĀλi ⊗ λj) = Tr(ρAλi)Tr(ρĀλj) , (4.23)

and |〈u|v〉| ≤ ‖ u ‖2‖ v ‖2.

Let us first look into the case where all observables λi are anti-commuting (i.e. K = 0) and
normalized [i.e. Tr(λiλi′) = dδi,i′ ]. This enables us to directly use the anti-commutativity bound
to state that

∑
i∈βA

|Tr(ρAλi)|2 ≤ max
i∈βA
〈λ2
i 〉 , (4.24)

and analogously for Ā. As a sum of moduli of expectation values is a convex function in the
space of density operators we have that the inequality 4.24 is not only valid for all product states
but also for all separable states. This additionally means that we can use the same procedure for
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the cases of non-normalized or only partially anti-commuting observables.

Here again the HW observables come in very handy as we can use them to simplify the bound
to ∑

i∈A
〈Q(αi)〉2 ≤ q2

max +K (4.25)

with q2
max = 1 + maxn∈N sin(4πn/d) being the maximum eigenvalue of a HW observable which is

the same for any Q(αj) for a given dimension and K ≤ 1
2

√∑
i 6=j∈A ‖{Q(αi),Q(αj)}‖2∞.

It shall be remarked that the case of non-vanishing anti-commutators has also been studied for
dichotomic observables in the context of uncertainty relations [138]. Our central quantity here K
is proportional to the 2-norm of the ”anti-commutator matrix” introduced therein.

4.1.2 Bipartite case

As an illustration of above mentioned method let us start out with the bipartite case. Here we will
use the maximally entangled state with qudits which is defined as follows

Definition 4.1.2 (Maximally entangled state). Given two quantum systems A and B of dimension
d the maximally entangled state is defined as

|ψmax,d〉 :=
1√
d

d−1∑
j=0

|j〉A |j〉B . (4.26)

In the bipartite case this state constitutes the maximal resource for many quantum information
processing and communication tasks. We can write the state in its Bloch decomposition using the
HW observables.

|φd〉〈φd| =
1

d2

(
1⊗ 1+

∑
α∈S
Q(α)⊗Q(α)∗

)
(4.27)

where Q(α)∗ = Q(−α∗) denotes the complex conjugate.

As one can see from above decomposition the expectation values for the diagonal elements are
all equal to 1. Therefore we can violate the upper bound by measuring only three anti-commuting
observables for each party. We can achieve even higher violations by choosing three pairwise anti-
commuting observables whose respective amplitudes fulfill the constraint |α1 × α2| = |α2 × α3| =
|α3 × α1| = π/2(2n + 1). This in turn leads to a general procedure for identifying sets of three
pairwise anti-commuting observables (the largest cardinality achievable for HW observables as we
have seen in Section 3.4.3).

We have that (4.24) for our case here (i.e. K = 0) reads as

3∑
i=1

〈Q(αi)⊗Q(αi)
∗〉

DV
≤ q2

max

CV
≤ 2, (4.28)
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where the upper bounds hold for separable states in the discrete (DV) and continuous variable
(CV) case. If we let the dimension go to infinity, i.e. in the continous limit d → ∞, the
maximally entangled state (definition 4.1.2) becomes the perfectly correlated Einstein-Podolski-
Rosen(EPR) state [30] which can also be written as an infinitely squeezed two-mode squeezed state,

i.e.
1√
π

∫
R dx |x〉 |x〉 =

1√
π

∫
R dx |p〉 |−p〉 with continuous Bloch decomposition

1

π2

∫
dα2Q(α) ⊗

Q(α)∗. The set of the three pairwise anti-commuting observables contains the HW observables
defined by three equiangular amplitudes with equal lengths

|αj | =
√
π/
√

3 ' 1.34 (4.29)

mutually separated by an angle 2π/3.

To show the advantages that the HW basis has in contrast to the so far most used generalised
Gell-Mann basis (see Section 3.3) let us see what this procedure would look like using the latter.
Using the generalised Gell-Mann basis all the correlations used in equation 4.28 are all equal to 2/d
[77] and thus we have that the necessary number of measurements that are required for detecting
entanglement scales with the dimension d, thus making it highly impractical for large dimension.
This clearly shows the advantageous properties of the HW observables in the detection of high-
dimensional entanglement.

Within one local systems the anti-commuting elements (see section 3.4.3) are limited one can
use tensor product bases containing commuting and anti-commuting sets to construct large sets.
This can be done by choosing an odd number of anti-commuting factors, as this guarantees the
anti-commutativity of the product. Through straightforward combinatorial calculations one can
extend this to arbitrary high number systems, given that the commuting and anti-commuting local
basis elements are found.

It should also be remarked that the bound presented here can be used to detect entanglement
even if the observables are nondichotomic and thus constitutes a genuine generalisation of the re-
sults obtained in [135, 136, 137].

4.1.3 Explicit bipartite example in d = 9

To give the reader a more detailed insight on this method works let us consider the bipartite
example in dimension d = 9. The explicit form of the density operator corresponding to the
maximally entangled state in dimension d = 9 (see definition 4.1.2) reads as

ρmax,9 =
1

9

8∑
i,j=0

|ii〉〈jj| . (4.30)
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Considering the following five amplitudes α1 =
√
πi/3, α2 =

√
π8i/3 , α3 =

√
π4/3, α4 = α1 + α3

and α5 = α2 + α3 we can define three observables,

O1 :=QA(α1)⊗QB(α2) (4.31)

O2 :=QA(α3)⊗QB(α3) (4.32)

O3 :=QA(α4)⊗QB(α5), (4.33)

each of which has an expectation values of 1 for the maximally entangled state. We have seen
in the last chapter there cannot exist HW observables that anti-commute for odd dimensions and
therefore K 6= 0. We can use equation 4.22 to establish an upper bound for the sum of moduli of
operators that holds for all separable states

|〈O1〉ρmax,9 |+ |〈O2〉ρmax,9 |+ |〈O3〉ρmax,9 | = 3 ≤︸︷︷︸
SEP

2.41987 (4.34)

which is clearly violated by the maximally entangled states

4.1.4 Explicit tripartite example in d = 4

For the case of three systems we will use the Greenberger-Horne-Zeilinger, short GHZ, state which
is defined as

Definition 4.1.3 (GHZ state). The n-partite GHZ state of dimension d is defined as

|ψ〉GHZ(n,d) =
1√
d

d−1∑
i,j=0

|i . . . i︸ ︷︷ ︸
n

〉 . (4.35)

For n = 2 it reduced to the maximally entangled state (see definition 4.1.2). Written down as
a density matrix for in the tripartite case for ququarts (i.e. d = 4) it reads as

ρGHZ(3,4) =
1

4

3∑
i,j=0

|iii〉〈jjj| . (4.36)

Again we begin by choosing a set of indices, such that we ensure anti-commutativity along a
partition. Now we also have to choose a bipartition along which we want to detect entanglement.
Here we will consider the partition into the subsystems A and BC. The three measurement settings
with amplitudes α1 =

√
π/4, α2 =

√
πi and α3 = α1 + α2 allow us to define the following three

observables

O1 :=QA(α1)⊗ 1⊗QC(α1) (4.37)

O2 :=QA(α3)⊗QB(α2)⊗QC(α3) (4.38)

O3 :=QA(α2)⊗QB(α2)⊗QC(α2). (4.39)

We have constructed these observables such that the first cut QA is anti-commuting as well as QB
is anti-commuting, while in contrary QC is commuting. This results in the overall cut QB ⊗ QC
being anti-commuting as required. If we look at the expectation values of these observables for the
GHZ state we get that〈O1〉ρGHZ(3,4)

= 1 , 〈O2〉ρGHZ(3,4)
= −1 and 〈O3〉ρGHZ(3,4)

= 1. We can again
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establish an upper bound that holds for all separable states which is clearly violated inserting above
values, i.e.

|〈O1〉ρGHZ(3,4)
|+ |〈O2〉ρGHZ(3,4)

|+ |〈O3〉ρGHZ(3,4)
| = 3 ≤︸︷︷︸

SEP

1. (4.40)

Here we in this particular case we have that the maximal eigenvalue of all observables, used in
(3.44), is equal to one. To recap how this method works, assume that the state would have been
separable into A and BC which means that it would be possible to split the commuting tensor
products of ABC into the anti commuting parts A and BC, such that theorem 4.1.1 would hold.
This is not the case, as we see a violation of the bound and can therefore conclude that the state
ρGHZ(3,4) is not separable across the split A|BC. Note that we could also use this method for any
other split (i.e. B|AC and C|AB) analogously and see a violation. This means that ρGHZ(3,4) is
not separable across any bipartite split.

In order to see how resistant our method is against white noise (modeled by the totally mixed
state of given dimension) we look at the noisy version of the GHZ state

ρnoisyGHZ(3,4)(p) = pρGHZ(3,4) +
(1− p)

64
1 . (4.41)

We then see that with this method we can achieve entanglement detection up to an threshold of
p > 1

3 . It should be remarked that the choice of observables above is not unique, although other
choices of observables might lead to an diminished noise resistance.
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4.2 Quantification

We have discussed in the beginning of the chapter the clear potential of high dimensional systems
and entanglement of such. Though for some tasks it might not be sufficient to solely detect entan-
glement in a system but we rather need to quantify how much entanglement is contained within
the system. Especially here, as we go to high dimensions not only the presence of entanglement
counts but also its dimensionality. The dimensionality of entanglement (i.e. the Schmidt rank) is
given by the rank of the reduced density matrix and denotes the minimal dimension that is needed
to reproduce the correlations of the state. Such that by proving a certain dimensionality of entan-
glement we also prove that the system must have it least this dimension in order to accommodate
these correlations. We see that proving the dimensionality of entanglement puts a number on the
entanglement in a system, but it can be quite a deceiving one. This is best explained in an example.
Consider the following state

|ψε〉 =
1√

2 + kε2

(
|0, 0〉+ |1, 1〉+ ε

k∑
i=1

|i, i〉

)
(4.42)

where ε � 1. Although this state has a (k + 2)-dimensional entanglement it only takes very little
entanglement resources in order to create it, namely, a little more than a single Bell state is suffi-
cient. We see that although it might prove quite useful to prove the dimensionality of entanglement
what we really want in order to properly quantify the amount of entanglement contained in a state,
is a number that describes the necessary entangled resources in order to create the state under
investigation. This quantity we will call entangled bits or e-bits, it is simply the number of number
of two-dimensional Bell states that are necessary to produce the target state. It is very hard task to
calculate the number of e-bits contained in a state [139]. We have not yet found any efficient way
to calculate this number, even if we have full access to a reconstructed density matrix and there
might not be any, as the best known algorithm to decide whether this number is nonzero already
scales exponential in the system’s dimension [140].

Instead of actually calculating this number for a given state, what we want to do here is to give
a lower bound in a very efficient way. One way to do so are entanglement witnesses. Entanglement
witnesses are a class of operators that has been well researched for a long time now [141]. On the
one hand they can be used to detect entanglement and on the other we can utilise the expecta-
tion values of these operators for quantifying the amount of entanglement contained in the state
[142, 143, 144, 145, 146, 147]. Entanglement witnesses come with the drawback that generically
they require a number of local measurement bases that scales with the system size in order to do
so. This means that complexity of an implementation rapidly increase with growing dimension.

A way that allows to reveal entanglement with just two local measurements uses mutually
unbiased bases (see definition 3.2.1) [148]. This has already been exploited for high dimensional
experiments [149, 150, 151]. In the following we will introduce a method that combines the best of
both approaches. This will allow us to give a lower bound on the e-bits contained in a state using
just two local measurement settings [9]. This method can even be generalised further in order to
tailor it to the target state [10].
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4.2.1 Entanglement of Formation

As discussed above we want to quantify the amount of entangled bits contained in a given state.
A measure that does so is the Entanglement of Formation (EOF) [152], for pure states quantifies
the asymptotic conversion rate between maximally entangled states and the quantum state under
investigation. It can be formulated in a regularised asymptotic way such that it precisely gives
this entanglement cost as a rate of ‘target states per Bell state’ also for mixed states. In plain
english this means, given N copies of qubit Bell states one can create k copies of the target state
deterministically using only local operations and classical communication (LOCC). In the limit
N → ∞ one can then find this asymptotic conversion rate N

k . Let us continue by defining the
Entanglement of Formation in technical terms first in the case of pure states.

Definition 4.2.1 (Entanglement of Formation (for pure states)). Given a pure state |ψAB〉 the
Entanglement of Formation is defined as

EoF (|ψAB〉) := S(TrA/B(|ψAB〉〈ψAB |)). (4.43)

This expression for pure states corresponds exactly to the Entropy of Entanglement. We can
generalise this definition to mixed states by introducing a optimisation over all decompositions into
projectors onto pure states, called convex roof construction.

Definition 4.2.2 (Entanglement of Formation). Given a quantum state ρ the Entanglement of
Formation is defined as

EoF (ρ) = inf
D(ρ)

∑
i

piEoF (|ψi〉). (4.44)

This in words means that we take the minimal average entanglement across all possible decom-
positions as a measure when it comes to general states. As mentioned, even if the whole state ρ is
known exactly, it is a hard problem even to decide whether the measure is nonzero [153].
Before we start looking into methods to get around the hardness of this problem let us have a peek
on how it is possible to extend the definition of the Entanglement of Formation to also quantify
multipartite entanglement. This is a notoriously hard task, contrary to the bipartite case there is no
unique ’currency’, from which every state can be created via LOCC. Despite the progress made using
maximally entangled sets [154, 155], the question about how to evaluate these measures including
many high dimensional parties is still an open one. Leaving aside the sufficiency one can come up
with a more rudimentary classification, focusing solely on the necessary resources. Along this lines
a multipartite generalisation of Entanglement of Formation was proposed in [145, 156, 157].

Definition 4.2.3 (Multipartite Entanglement of Formation). Given a quantum state ρ the multi-
partite Entanglement of Formation is defined as

EGME := inf
D(ρ)

∑
i

pi min
Ai

S(TrAi(|ψi〉〈ψi|)), (4.45)

where Ai denotes a bipartition.

Operationally spoken it covers the minimal necessary average entanglement across every cut
for creating the target state via LOCC. As we have solely focused on the necessary resources this
measure does not reveal any deeper structure of the entanglement, it is non-zero for any multipartite
entangled state and trivial if there exists a decomposition into at least biseparable states.
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4.2.2 MUB bound

As it is a hard problem to decide whether the Entanglement of Formation is nonzero even given
full knowledge about the state in question ρ [153] we want to find a lower bound to this measure.
The framework presented here relies on only two measurement outcomes. It may be surprising that
an entanglement of log(d) can be certified using only two measurement settings but it is possible.
This astonishing power comes with a trade-off, the bound is sensitive to noise. After the presenting
the bound we will continue with an analysis of the performance of the bound. Let us begin with
the bipartite case. The advantage that we have in bipartite systems is that we can use the Schmidt
decomposition , which in general does not exist for multipartite states.

Our framework will make use of correlations in two mutually unbiased bases. Natural candi-
dates for two such bases in high dimensions are for example discretised position and momentum
correlation. The central figure of merit that we will use is similar to the one developed in [148]. This
means that our method is easily applied to already existing experimental data (e.g. from [150, 149]).
For bipartite systems the existing method makes use of the sum over all diagonal correlations in m
different MUBs, that is

Cm(ρ) :=

m∑
k=1

d−1∑
i=0

〈vki (vki )∗|ρ|vki (vki )∗〉 . (4.46)

Let us get a deeper look in simplest case, that of the qubit. For d = 2 exactly m = 3 MUBs
exist. Physically that would correspond to the polarisation of photons, path information of an
particle in an interferometer or whether an atom is excited or not. Basically any two-dimensional
quantum degree of freedom. For the sake of simplicity let us take the polarisation of photons as
the example to see what this quantity is about. Corresponding to the three MUBs there are six
different polarisation states: Horizontal, Vertical, Diagonal, Anti-diagonal, Left-handed-circular,
Right-handed-circular. We will denote theses by their initial letter, H,V,D,A,L,R. Furthermore
we want that 〈X,Y 〉 denotes the coincidence counts in X and Y for the first and second photon.
This leads to

C3 =
〈H,H〉+ 〈V, V 〉+ 〈D,D〉+ 〈A,A〉+ 〈L,L〉+ 〈R,R〉

〈H,H〉+ 〈H,V 〉+ 〈V,H〉+ 〈V, V 〉
. (4.47)

The actual values will depend on the state that we measured, still we can make some general
statements. In [148] the authors prove that this quantity is upper bounded for separable states by
1 + m−1

d . The maximally entangled (see 4.1.2) on the other hand reaches a values of m. Surpassing
the value that is allowed for separable states means that we have detected entanglement. Here we
are interested in the case of m = 2 which is the minimal number bases that one needs in order
to detect entanglement. Not only is C2 the easiest to realise experimentally but also it suffices to
detect entanglement in any pure state. Now we have to relate it to the EOF in order to be able to
not only detect but also quantify entanglement in a given state.

To continue with our task at hand we look at a motivating example. The three MUBs for the
qubit case that we treated above can be chosen to be represented by the Pauli matrices σi. Then
the six different polarisation states are described by the six eigenstates of the Pauli matrices. If we
would only measure in two of the three polarisation directions on both sides, we would for example
get information on the following expectation values 〈σx ⊗ σx〉 and 〈σy ⊗ σy〉. In the case that we
would find both of these values to be close to −1, we would be able to make statements about
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the possible outcome in the third measurement direction. Specifically the positivity of the density
operator implies that it has to be close to −1 as well, i.e. 〈σz ⊗ σz〉 ≈ −1. Such that by just
making two measurements we can infer that the state at hand is close to a Bell state and therefore
has an EOF close to 1. In the [158] the authors give such an example and furthermore the provide
a semi-definite programming characterisation (SDP) to o evaluate the convex roof extended linear
entropy, even if the values are not close to −1.

Let us put these statements into a more rigorous and analytical form. The following quantity
allows us to quantify entanglement in a noise robust manner for any dimension d with just two
measurements is defined as

B(ρ) := N
[
d

(
d−1∑
i=0

〈v2
i (v2

i )∗|ρ|v2
i (v2

i )∗〉

)
− 1−

∑
m6=n,m 6=l
l 6=o,n6=o

√
〈v1
mv

1
n|ρ|v1

mv
1
n〉〈v1

l v
1
o |ρ|v1

l v
1
o〉 (4.48)

−
∑
i6=j

√
〈v1
i v

1
j |ρ|v1

i v
1
j 〉〈v1

j v
1
i |ρ|v1

j v
1
i 〉
]

where N =
√

2
d(d−1) . Whenever this quantity B(ρ) ≥ 0 we can indeed lower bound the Entangle-

ment of Formation in the following way

EoF (ρ) ≥ − log(1− B(ρ)2

2
) . (4.49)

As the next section 4.2.3 is devoted to the derivation of B(ρ) and equation 4.49, let us continue
here with a discussion on the implications and a brief look into noise resistance here.

One interesting observation is that if we take the maximally entangled state |ψmax,d〉 we have
that

B(|ψmax,d〉〈ψmax,d|) =

√
2(1− 1

d
). (4.50)

This means that we can quantify all the entanglement of the maximally entangled state as equal
to EoF = log(d) with just two global measurement setting. It is important to stress that these
results hold for any pair of MUBs. Moreover, the additional terms that are needed for computing
B(ρ) can be recorded alongside with the original measurements which means that there is no need
for adjusting the local measurement settings.

So in order to gauge the practical usefulness it will be essential to study the performance of the
bound in experimentally feasible settings with all the specific sources of noise taken into account
that correspond to that very experimental setting taken into account. This we will do in section
4.2.6. Here we conduct a general theoretical analysis of the noise resistance for two paradigmatic
noise models, dephasing and white noise. This analysis clarifies that the feature that our bound
holds for any arbitrary pair of MUBs comes at the cost of having higher sensitivity to noise.
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We start dephasing noise, where we mix the intended (for the bipartite case always maximally
entangled state as it constitutes the maximal resource) target state is mixed with its dephased
version, i.e.

ρdp(p) = p|ψmax,d〉〈ψmax,d|+
(1− p)
d

(
d−1∑
i=0

|ii〉〈ii|

)
. (4.51)

Computing our quantity for ρdp(p) leads to

B(ρdp) = N

(
d

(
p+

(1− p)
d2

− 1

))
. (4.52)

This implies that we can see entanglement up to a noise threshold of pcrit = 1
d+1 . We can imme-

diately see that the noise resistance increases with the dimension d. On the other if we look at
the white noise model we mix our target state with the maximally mixed state, as we have already
done in the sections 4.1.3 and 4.1.4.

ρwn(p) = p|ψmax,d〉〈ψmax,d|+
(1− p)
d2

1d . (4.53)

Evaluating our quantity for the white noise model we have that

B(ρwn) = N

(
d

(
p+

(1− p)
d2

− 1− d− 2

d
(d− 1)2(1− p)

))
. (4.54)

This actually leads to a decreasing noise resistance of pcrit = d2−3d+2
d2−2d+2 which approaches 1 for

d→∞. In this short analysis we have used very idealised models of noise that are both somewhat
unrealistic. As already mentioned we will there conduct a more detailed study of the noise robust-
ness in section 4.2.6 for the specific experimental proposal that will be introduced in section 4.2.4.

4.2.3 Derivation of the bound

We now want to present a detailed derivation of the fact that two MUB measurements can quantify
bipartite entanglement for any dimension d, even without any knowledge about the specific structure
of the second MUB. We start the derivation by pointing out the lower bounds for the concurrence
(i.e. the square root of the linear entropy) developed in [156, 157] as

I(ρ) :=

√
2

d(d− 1)

∑
m 6=n

|〈mm|ρ|nn〉|︸ ︷︷ ︸
I1

−
√
〈mn|ρ|mn〉〈nm|ρ|nm〉︸ ︷︷ ︸

I2

 (4.55)

≤ inf
D(ρ)

∑
i

pi
√

(2 (1− Tr(ρiA
2))) , (4.56)

where {pi} is a probability distribution.

To get a bound on the Entanglement of Formation we can use the relation between the linear
entropy HL := 1 − Tr(ρ2) and the Renyi 2-entropy H2(A)ρ = − log(Tr(ρ2

A)). Moreover we know
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that that the family of Renyi entropies is monotonically decreasing in α, i.e. it holds that Hα ≥
Hβ ∀α ≤ β. As a reminder we repeat the definition of the Entanglement of Formation here,

EoF (ρ) = inf
D(ρ)

∑
i

piH(A)ρi . (4.57)

with {pi} again denoting a probability distribution. If we take together above observations we
directly find the following lower bound

EoF (ρ) ≥ − log(1− I2

2
) (4.58)

So from now on our task will be to lower bound I(ρ) using only two mutually unbiased measure-
ments. The first thing to notice is that I2 in equation 4.55 is directly accessible from correlations in
the first basis 〈mn|ρ|mn〉, i.e. choosing {|v1

i 〉} = {|i〉}. Since the term I2 is strictly positive and it
decreases I(ρ). Therefore it is desirable to have these ’wrong’ correlations as suppressed as possible.
This means, that when analysing experimental data one should choose the basis states such that
the most correlated elements between Alice and Bob are labeled by the same numbers m.

Now comes the more tricky part: Estimating the total number of coherences in the term I2.
First we remind ourselves that to be mutually unbiased the bases have to have an overlap that
fullfills |〈v2

i |j〉|2 = 1
d ∀i, j. That means that we can write the second basis as

|v2
k〉 =

1√
d

d−1∑
m=0

e−iφ
k
m |m〉 . (4.59)

If we now evaluate the following linear combination of Cm (see equation 4.46) for the two mutual
unbiased bases

Σ(ρ) := C2 − C1 =

d−1∑
k=0

〈v2
kv

2
k
∗|ρ|v2

kv
2
k
∗〉 (4.60)

we first notice that |v2
kv

2
k
∗〉 = 1

d

∑
m,n e

−i(φkm−φ
k
n)|mn〉 such that we can write

Σ(ρ) =
1

d2

∑
k

∑
m,n,l,o

ei(φ
k
m−φ

k
n+φko−φ

k
l )〈mn|ρ|lo〉 . (4.61)

To properly evaluate Σ(ρ) we conduct a case by case study for the different values of the indices.
We start by observing that

d−1∑
m=0

ei(φ
k
m−φ

k′
m) = 0 ∀ k 6= k′ (4.62)

due to the fact that 〈v2
k|v2

k′〉 = 0∀ k 6= k′. From this follows that all the terms such that m = l and

n 6= o vanish as we find the pre-factor to be
∑d−1
k=0 e

i(φko−φ
k
n) = 0. The same holds true for terms

where the indices fullfill m = n and l 6= o, n = o and m 6= l or l = o and m 6= n.

This means that there are three cases left which we have to evaluate, namely:
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1) m = l and n = o

2) m = n and l = o

3) m 6= n, m 6= l, n 6= o and l 6= o

We will now split the remaining non-vanishing parts of the sum in Σ(ρ) into three parts Σ(ρ) =
Σ1(ρ) + Σ2(ρ) + Σ3(ρ) corresponding to the three different cases. For the first part this simply
yields

Σ1 =
1

d

∑
m,n

〈mn|ρ|mn〉︸ ︷︷ ︸
=Tr(ρ)=1

=
1

d
. (4.63)

The second case is especially interesting as

Σ2(ρ) =
1

d

∑
m 6=l

〈mm|ρ|ll〉 , (4.64)

which means that it contains exactly the same expectation values as I2 in the quantity that we
want to bound. Last but not least we have

Σ3(ρ) =
1

d2

∑
m 6=n,m6=l
l 6=o,n6=o

cm,n,l,o Re[〈mn|ρ|lo〉] (4.65)

where we have introduced the following object purely for convenience

cm,n,l,o :=
∑
k

ei(φ
k
m−φ

k
n+φko−φ

k
l ) . (4.66)

The Cauchy-Schwarz inequality implies that

0 ≥ dΣ3(ρ)−
∑

m 6=n,m6=l
l 6=o,n 6=o

√
〈mn|ρ|mn〉〈lo|ρ|lo〉 (4.67)

and as we have that Re[z] ≤ |z| we can lower the first part of I(ρ) in the following way

I1 ≥ d

Σ− 1

d
− 1

d

∑
m 6=n,m 6=l
l 6=o,n 6=o

√
〈mn|ρ|mn〉〈lo|ρ|lo〉

 . (4.68)

Thus

I1 − I2 ≥ d

Σ(ρ)− 1

d
− 1

d

∑
m 6=n,m6=l
l 6=o,n6=o

√
〈mn|ρ|mn〉〈lo|ρ|lo〉

 (4.69)

−
∑
m6=n

√
〈mn|ρ|mn〉〈nm|ρ|nm〉 =

1

N
B(ρ)
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where N =
√

2
d(d−1) . It is now straightforward to see that we have finally arrived at our goal, i.e.

we shown that

EoF ≥ − log

(
1− B(ρ)2

2

)
. (4.70)

4.2.4 Experimental proposal

A natural candidate for two mutual unbiased bases are discretised position and momentum. They
correlations in theses bases can be produced at a high quality and therefore have already been
used to verify entanglement experimentally [159, 160, 161]. The experimental proposal that we
will present here to show the usefulness of the method presented above will be based on modern
cameras and lenses (which perform a Fourier transformation in the far field). We also utilise down-
conversion photons whose spatial correlations we want to quantify. In the scenario that we consider
a pair of photons illuminate single-photon sensitive cameras. Simple optics suffice to access two
mutual unbiased bases (the position-basis and the momentum-basis) which we will use to evaluate
the strength and noise-dependence of our method. Moreover this presents an ideal case to exploit
the fact that we do not need to know he exact phase relation between the mutually unbiased bases,
saving a lot of effort on side of the experimentalists.

Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal is process that creates
the photon pairs which we will use [162]. The creation of correlated photons in this manner is a
well established technique in quantum optical experiments. In a type-II SPDC the two photons can
be deterministically separated due to their opposite spin. This would also be the case if they have
different wavelengths. The two beams are sent onto two different regions of an ICCD (intensified
charge-coupled device) camera or two separated cameras, depending on the setup at hand.

The advantage of ICCD cameras is their high detection efficiency, which amounts to about 20%
for 800nm and up to 50% for green light. Furthermore they feature are very low dark count rate
therefore qualifying as single-photon sensitive devices. One could also use electron multiplying
charge-coupled device (EMCCD) cameras which come a long with even higher efficiencies but have
the disadvantage of very high dark count rates. In the case one can use averaging techniques in
order to infer quantum correlation [117, 163]. We do not use this approach here, as ideally we tap
directly into raw count rates of the measured data.

In the first step of the proposal we directly image the crystal onto the camera. This way we
should be able to see the strong position correlations produced in the SPDC. For the second step a
lens is introduced into the setup (see A in figure 4.2) that allows us to go to the Fourier-plane of the
crystal. The second measurement should therefore reveal the strong momentum correlations, which
should result in strong position anti-correlations in the image. The ratio between the marginal
and conditional probability, called Federov-Ratio F is widely used measure in order to quantify the
strength of spatial correlations. Here all the examples will be calculated with a value of 25, which
is a realistic value that can be reached in contemporary experiments [162].

As already said, it is essential for gauging the power of our method to study the performance of
the bound taking all sources of noise into account. In the proposed experimental setup the three
major sources of noise that reduce the detectable number of e-bits through equation (4.49). The
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Figure 4.2: A: The proposed experimental setup. A laser produces pairs of spatially entangled
photons with wavelength of 800nm in a SPDC process in the nonlinear ppKTP crystal. After the
pump beam is removed by a dichroic mirror, the photon-pair is deterministically separated with a
calcite polariser. The two parts of the beam then go to different positions at a camera. Depending
on the lens configuration, the photons are detected in the position-basis (if the two imaging lenses
(IL) are in the beam path) or in the momentum-basis (if only the Fourier lens (FL) is used). B: Here
we showcase two different effects that predominantly reduce the certifiable e-bits, white noise and
cross-correlations between different pixels. The purple and orange graphs show different weighting
of the individual terms. Purple depicts a beam with σ = 100 pixels, and orange σ = 25 pixels. p
stands for the probability of white noise or cross-correlations, respectively. C: The considered areas
of pixels at the screen of the ICCD camera as considered in the calculations. Due to the significant
impact of white noise, it is optimal to use only small parts of the camera. Figure and caption from
[9].
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first effect are dark counts, they should be roughly distributed uniformly over all camera pixels, such
that they average out and therefore result in white noise. The second effect are cross-correlations
between different states that also impact the the number of certifiable e-bits negatively. Last an
non-equal weighting of the different modes also has an effect on the quality of the produced data. In
section 4.2.6 these effects are analysed in detail and the graphs of B in figure 4.2 show the interplay
of these effects.

As for different configurations of the camera and labelling of the pixels in the analysis of the
data, the mentioned sources of noise impact the results differently, we will look at some example
cases that are within the range of feasible experiments. In the next section we will perform a careful
analysis of these effects. For the moment we will look broadly at what is possible. Intuitively, we
observe that if we group large regions together, we can reduce cross-talk but in turn increase the
number of dark counts. In figure 4.2C, a carefully chosen configuration is presented that allows for
the certification of more than 3 e-bits. In this configuration we group together 7× 7 pixels to make
up a region whose counts we use to compute the expectation values that include the chosen label.
We leave enough space between the regions in order to minimise the cross-talk between them. The
concentric arrangement of the considered regions lowers the effect of the unequal weighting of the
beam. In this setup we find that the optimal number areas to consider is 10 (i.e. we consider qudits
with dimension d = 10) for which we can tolerate a noise-level of 0.6% in order to detect 2.4 e-bits.
If we reduce the size of the considered areas to 3 × 3 pixels, we find 3.05 e-bits if the rest of the
setup remains the same. It might at first seem a little counterintuitive that a reduced size of the
areas considered actually leads to a higher value of certified e-bits. Although the smaller regions
decrease the number of photons detected per unit of time (proportional to the area not counted) we
have that in this example the chosen wide single-photon beam features a probability distribution
for finding a photon in any of the regions that is nearly uniform. Therefore the reduced size leads
to a significant decrease of white noise resulting in a higher number of e-bits. The optimisation of
the design for the optimal areas can be done after the data is collected, as it is a mere question of
labelling. In section 4.2.7 a step-by-step calculation for the case of d = 3 is conducted.

Last we have to also look at the stabilisation of the setup for longer times as this poses an
experimental challenge. As for ICCDs we that the maximum imaging rate is about 10 per second.
That means that we have to choose a very low photon production rate of roughly 1 Hz (=Hertz
is the unit of frequency in the International System of Units and is defined as once per second),
to prevent multi-photon events which would increase the level of white noise. Also only a small
fraction of the pairs (around 1 in 100) actually arrives in the considered regions, taking into account
the detection efficiency this leads to a rate for the measured photon pairs in the order of 10−4 Hz.
At this rate one needs around 100 − 200 hours to collect the necessary data. There exist various
workarounds to this caveat. Switching from the standard 800nm frequency where the efficiency is
around 20% to green entangled photons [164] would pump up the detection efficiency to about 50%.
If available one could also use novel sCMOS (scientific complementary metal-oxide-semiconductor)
cameras [165, 166] which are faster and feature lower noise compared to the ICCDs. Also the use
compressed sensing approaches [161] could be an option.
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4.2.5 Evaluation

In principle, the method presented here gives one the ability to certify arbitrary amounts of en-
tanglement, for pure states at least. Even with a realistic noise assessment we show that it should
be possible with current technology to certify three times more entanglement than then maximally
entangled (qubit) state. This can be achieved with only two global measurement settings and with-
out knowledge of the specific phase relations of the two MUBs. Development of more advanced
camera technologies or clever detection design should push the number of experimentally certifiable
e-bits even higher. One of the reasons we developed this method was to show the potential of down
conversion sources for high dimensional quantum communication. Still, this method is not limited
to optical systems. In principle it can be applied to any other quasi-continuous variable entangled
systems, given the necessary experimental control.

One way to further reduce the sensitivity to noise of our method would be the inclusion of
further measurements. This however would require precise knowledge or control over the phase
relation between them and is not possible for all systems. Take wavelength-entangled systems for
example where one has access to exactly two MUBs, namely wavelength and time. This might prove
the great potential of wavelength-entangled quantum systems[167, 168, 169]. Note that the method
was recently generalised to be applicable for relation between the two bases and also including a
protocol how to tailor the second basis specifically to the target state. This allowed us to show
9-dimensional entanglement in an 11-dimensional system using orbital angular momentum (OAM)
states.

Furthermore, this method could prove to be very useful for quantum key distribution protocols
(QKD). Up today this protocols show a heavy trade-off between security and implementability.
Fully device independent quantum key distribution for example relies on (almost) loophole free Bell
inequality violation, which have been achieved recently but with an immense experimental effort
[170, 171, 172]. Prepare and measure schemes are easier to implement but suffer the feat that be
attacked by hacking the source or the measurement devices. Randomised application of our method
could help to certify that entanglement is present in source, not affecting the key rates too much.
This would enable a certification of high levels of security for high dimensional QKD through the
interpolation between prepare and measure and fully device independent schemes.

4.2.6 Analysing the noise robustness

As promised this section is devoted to conducting a detailed analysis of noise sources in the experi-
mental proposal presented above. As mentioned the three most impactful effects on the amount of
certifiable e-bits that we can discuss here are:

i) Cross correlations

ii) Unequal weighting

iii) White noise

Where one can attribute i) to non-perfect correlations, ii) to the gaussian character and iii) to
accidental dark counts of the camera.
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Furthermore we need to specify how to get from the measured data to the to expectation values
〈mn|ρ|mn〉 which we need to evaluate the bound. This can be done by taking to be Nm,n as the
total number of correlated clicks recorded between area m on Alice’s side and area n on Bob’s side
and then computing

〈mn|ρ|mn〉 =
Nm,n∑
i,j Ni,j

, (4.71)

analogously for the second basis.

Cross correlations

There are physical constraints in the experimental production of the spatial correlations that we
exploit in our proposed setup. Such constraints are for example the size of the pump laser or the
length of the crystal that lead to a finite strength of the correlations. This leads to a cross-talk
between pixel areas which lead to a smaller number of certified e-bits.

For the sake of simplicity we restrict ourselves to cross-correlations only between directly neigh-
bouring areas. The description of the cross-correlations depends on the geometry of the considered
pixel areas and the restriction to direct neighbours that we only take into account first-order contri-
butions. In the configuration that we chose for our proposal (figure 4.2C) all areas have two direct
neighbors.

If one takes NB(x) to be the set of neighbours of x, then

|x, x〉 = NC

cx |x, x〉+
∑

y∈NB(x)

cx,y (|x, y〉+ |y, x〉)

 (4.72)

where cx and cx,y are calculated numerically. Note that we did significantly reduce the impact
of cross-correlation to the outcome of the bound by introducing blank areas between the ones that
are considered as can be seen in figure 4.2C.

Unequal weighting

The unequal weighting of the different pixel-areas comes mostly from the Gaussian character and
is influenced by the discretisation of the grid. One can write the state as

|ψU 〉 = NU

(
xmax∑
x=0

wx|x, x〉

)
(4.73)

where wx is calculated numerically and |x, x〉 was discussed above. Note that we could have flattened
the distribution by an adjustment of the discretisation, this however results in the adverse effect of
increasing the white noise.
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White Noise

The majority of white noise can be attributed to dark counts on the ICCD camera but also to
photon loss. Both of these effects we expect to be uniformly distributed over the whole camera so
that we can use the same model that we have used so far, namely

ρW = pW |ψU 〉〈ψU |+
1− pW
d2

1d2 (4.74)

with |ψU 〉 being the same as in equation (4.73).

As we have discussed already another source of white noise would be a multi-photon events.
We that for every specific setting of dark-count rate, detector-efficiency and used area of the ICCD
we to find the optimal value for the photon-pair rate P . We will therefore only take into account
events with exactly one photon pair.

Considering only events with exactly two photons and rejecting all others makes our analysis
considerably more simple. If we consider two regions, region A and region B, the following events
are possible

• Two dark counts

• One dark count, one real count

• Two real counts.

What we are interested in, is the probability of good counts. First we calculate all counts,

Nall = P̄ (D1D2) + (4.75)

+ P 1
(
D1D2ε̄1ε̄2 +D1ε2D̄2ε̄1 + ε1D2D̄1ε̄2 + ε1ε2D̄1D̄2

)
+

+ P 2
(
D1D2ε̄1

2ε̄2
2 + 2D1ε2D̄2ε̄1

2ε̄2 + 2ε1D2D̄1ε̄2
2ε̄1 + 4ε1ε2D̄1D̄2ε̄1ε̄2

)
+

+ ...

=

∞∑
n=0

Pn
(
D1D2ε̄1

nε̄2
n + nD1ε2D̄2ε̄1

nε̄2
n−1 + nε1D2D̄1ε̄2

nε̄1
n−1 + n2ε1ε2D̄1D̄2ε̄1

n−1ε̄2
n−1
)

where D is a dark count, D̄ is a good count, ε means the photon is detected and ε̄ that it is not.
Furthermore we denoted P̄ the probability that no photon-pair is created. We are only interested
in the good counts for the case that one photon pair is created, i.e.

Ngood = P 1
(
ε1ε2D̄1D̄2

)
(4.76)

and in terms of probability, simply

pgood =
Ngood
Nall

. (4.77)

As we assume that both the dark counts and the detector efficiency is equal all over the ICCD
camera, we furthermore have that D1 = D2 and ε1 = ε2. We arrive at the white-noise probability
through

pW = 1− pgood . (4.78)
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4.2.7 Step-by-step calculation in three dimensions

To explicitly show how the method works, let us have a look at data that has been simulated for
the case d = 3 which includes a conservative estimation of noise. We will use the following labels

Basis 1 : |0〉1 |1〉1 |2〉1
Basis 2 : |0〉2 |1〉2 |2〉2 .

Given the data we can compute a 3× 3 correlation matrices for both bases

Corri =

 〈0, 0|i ρ |0, 0〉i 〈0, 1|i ρ |0, 1〉i 〈0, 2|i ρ |0, 2〉i〈1, 0|i ρ |1, 0〉i 〈1, 1|i ρ |1, 1〉i 〈1, 2|i ρ |1, 2〉i
〈2, 0|i ρ |2, 0〉i 〈2, 1|i ρ |2, 1〉i 〈2, 2|i ρ |2, 2〉i

 . (4.79)

We can use a single index i to indicate the basis because we assume that both photons are measured
in the same basis. We compute the respective expectation values in the bases through the number
of coincidence clicks. So for example 〈0, 0|i ρ |0, 0〉1 can be computed by taking the number of
coincidence clicks N11 that we have gotten in basis 1 for the region 0 on both sides and the total
number of clicks. Using the formula given in the beginning of the section we have that

〈0, 0|1 ρ |0, 0〉1 =
N11∑3
i,j=1Nij

. (4.80)

Note that this method works the same no matter which type of MUBs one uses. Here we will
use data that is simulated for measurements in position (Basis 1) and momentum (Basis 2). Using
the noise model we discussed in section 4.2.6 we have the following correlation matrices

Corr1 =

 1015 23 9
17 947 8
9 28 1008

 (4.81)

Corr2 =

 1053 21 7
29 1017 25
5 15 1023

 . (4.82)

Now to calculate the main quantity of our bound B(ρ) in equation (4.48) which enables us to
lower bound the Entanglement of Formation, we compute the first term. To compute the sum of
correlations on the diagonal which are featured in the first term, we simply take the sum of all the

diagonal entries and the divide them by the sum of all entries, e.g. for basis 1, C1 = Diag(Corr1)
Total(Corr1)

gives C1 = 2970
3064 = 0.9693. For the term that appears in B(ρ) we actually need the correlations in

basis 2, namely the ones on the diagonal, this is C2 = Diag(Corr2)
Total(Corr2) = 0.9681.

The second term of the bound is formed by the off-diagonal elements of the correlation matrix for
basis 1. We have the four indices (m,n, l, o) each of dimension d = 3 together with the restrictions
m 6= n,m 6= l,l 6= o,n 6= o, which results in a total of 18 terms. For the first term m = 0, n =

1, l = 1, o = 0 we get
√
〈0, 1| ρ |0, 1〉 〈1, 0| ρ |1, 0〉 =

√
23·17
Corr1

= 0.00645. Analogously, the second
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term m = 0, n = 1, l = 1, o = 2 reads
√
〈0, 1| ρ |0, 1〉 〈1, 2| ρ |1, 2〉 =

√
23·8
N = 0.0044, the third term

m = 0, n = 1, l = 2, o = 0 evaluates to
√
〈0, 1| ρ |0, 1〉 〈2, 0| ρ |2, 0〉 =

√
13·9
N = 0.00470 and so on and

so forth. Thus summing up all the terms we get that

M1 =
∑

m 6=n,m 6=l
l 6=o,n 6=o

√
〈v1
mv

1
n|ρ|v1

mv
1
n〉〈v1

l v
1
o |ρ|v1

l v
1
o〉 = 0.0852 . (4.83)

The last missing piece is the sum of square roots of the off-diagonal elements defined by the two
indices i and j such that restriction i 6= j holds. Again we use the correlation matrix of basis 1. For

the first case i = 1 and j = 1 we have
√
〈0, 1| ρ |0, 1〉 〈1, 0| ρ |1, 0〉 =

√
55·56
N = 0.00645, the second

case i = 0, j = 2 we have
√
〈0, 2| ρ |0, 2〉 〈2, 0| ρ |2, 0〉 =

√
9·9
N = 0.00294 and so on. In the end

M2 =
∑
i 6=j

√
〈v1
i v

1
j |ρ|v1

i v
1
j 〉〈v1

j v
1
i |ρ|v1

j v
1
i 〉 = 0.02856 . (4.84)

Putting together all the pieces we get that

B(ρ) =

√
2

d(d− 1)
(d · C2 − 1−M1 −M2) (4.85)

=

√
1

3
(3 · 0.9681− 1− 0.0852− 0.02856) = 1.0338 . (4.86)

Now we can use the value that we got for B(ρ) to finally lower bound the Entanglement of
Formation through (4.49). We find that

EoF (ρ) ≥ − log(1− B(ρ)2

2
) = 1.1 . (4.87)

We have now proven that a state, whose measurement results lead to statistics like the ones
given in 4.81 and 4.82, has to contain at least 1.1 bits of nonlocal information. This is not the
only the only implication we can derive from this. As the maximum amount of e-bits that a state
of dimension d = 2 can contain is equal to 1, we have that a value of 1.1 is only possible if the
underlying state has at least dimension d = 3. In general we can lower bound the entanglement
dimensionality, which is equal to the minimal possible Schmidt number as

D ≥ d2EoF (ρ)e . (4.88)

For our example here this means that the Schmidt number of the state is at least

D ≥ d2.4e = 3 . (4.89)

This method of certifying the dimensionality of entanglement has been generalised to any two
bases in [10].
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4.2.8 The multipartite case

In the bipartite case the criteria that we derived did not require any knowledge of the phase relation
between the bases. The lower bound that we derived was genuine, it had no assumption on the
underlying state. In the multipartite case this proves to be very hard. Although one can certify
all entanglement contained for specific pure multipartite state using just two MUBs, it cannot be
done in general. With growing number of systems considered there is exists a multitude of pos-
sible correlation structure, giving rise to genuine multipartite entanglement (GME), making the
construction of a single universal criterion virtually impossible. One of the big disadvantages that
we have in the multipartite case, is that in general there exists nothing similar to the Schmidt de-
composition. In principle method can be tailored to any GME state and especially to known states
of a specific dimensionality structure [173], for the sake of simplicity we will focus on n-partite d-
dimensional GHZ states though. As mentioned they can be readily produced in optical setups [174].

Another difference to the bipartite case is that we cannot ignore the phase relation between the
MUBs anymore. Therefore we assume the following relations for the rest of this section

|̃ik〉 :=

d−1∑
m=0

ωĩm|m〉 , (4.90)

where ω := e
2πi
d . Furthermore we have to define the functions

sα :=

n∑
j=1

ij mod d. (4.91)

and

fα :=



1 if 0 ≤ sα ≤
⌊
d

4

⌋
−1 if

⌈
d

4

⌉
≤ sα ≤

⌊
3d

4

⌋
1 if

⌈
3d

4

⌉
≤ sα ≤ d− 1

(4.92)

in order to get to the first quantity of interest. Analogously to the bipartite case where we had
Cm, which was a linear combination of diagonal density matrix elements, here we define

Cn,d :=
∑
α

fα〈k̃α|ρ|k̃α〉 (4.93)

where α = i1, . . . , in denotes a multi-index with i1, . . . , in ∈ {0, . . . , d − 1}. We now take pl to be
the number of combinations for which sl = l,
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1

ξ
:=

1

2dn

d−1∑
l=0

pl|Re e(ωl)| , (4.94)

and let

g = 1− 2p0

dn
. (4.95)

This allows us to input the phase relations of equation (4.90) into Cn,d, such that we arrive at

Cn,d = −g +
1

ξ

∑
γ

Re〈kα|ρ|kβ〉 (4.96)

where γ := {α, β|i ∈ α, k ∈ β : 〈ij |kj〉 = 0 ∀ 1 ≤ j ≤ n}.
The strategy will be the same as in the bipartite case. We will try to relate Cn,d to lower bounds

on concurrences for multipartite systems [145, 146, 147, 156, 157], in particular the following

CGME ≥

√
2

d(d− 1)

d−1∑
j=0

∑
i6=j

|〈i|⊗nρ|j〉⊗n| −
∑
κ

Pκij

 (4.97)

where

Pκij =
√
〈i|⊗n〈j|⊗nΠκρ⊗2Πκ|i〉⊗n|j〉⊗n . (4.98)

For this purpose let us have a look at a the following quantity

Cn,d := ξCn,d −
d−1∑
j=0

∑
i<j

|〈i|⊗nρ|j〉⊗n| − g. (4.99)

which allows us to establish a lower bound for CGME of the form

CGME ≥

√
2

d(d− 1)

(
ξCn,d − Cn,d −

∑
κ

Pκij

)
. (4.100)

Now we can apply the Cauchy-Schwarz inequality to arrive at our final result

CGME ≥

√
2

d(d− 1)

ξ
Cn,d −∑

γ′

√
〈kα|ρ|kα〉〈kβ |ρ|kβ〉

+ g −
∑
κ

Pκij

 . (4.101)

which holds for γ′ := γ/{α, β|i ∈ α, k ∈ β : 〈ij |kj〉 = 0 , ij = ih , kj = kh ∀ 1 ≤ j, h ≤ n} .

As mentioned before these bounds need to be tailored to specific GME states in order to properly
work. In the next section we will look at explicit examples of this bound in the tripartite case for
the GHZ state as mentioned in beginning of the section.
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4.2.9 Explicit tripartite examples

This section is devoted to presenting the inequalities that result from the multipartite bound ex-
plicitly. The tripartite scenarios, i.e. n = 3, will only be presented for qubits and qutrits, d = 2
and d = 3 respectively.

Qubits

The explicit version of the bound for the genuine multipartite concurrence [156, 157] reads as

CGME ≥ BGME(ρ) =2
(

Re〈111|ρ|000〉 −
√
〈001|ρ|001〉〈110|ρ|110〉 (4.102)

−
√
〈010|ρ|010〉〈101|ρ|101〉 −

√
〈011|ρ|011〉〈100|ρ|100〉

)
.

The quantity Cn,d is given as the linear combination of the following expectation values

C3,2 =〈+ + +|ρ|+ ++〉+ 〈+−−|ρ|+−−〉+ 〈−+−|ρ| −+−〉 (4.103)

+ 〈− −+|ρ| − −+〉 − 〈+ +−|ρ|+ +−〉 − 〈+−+|ρ|+−+〉
− 〈−+ +|ρ| −++〉 − 〈− −−|ρ| − −−〉
= 2(Re〈111|ρ|000〉+ Re〈001|ρ|110〉+ Re〈010|ρ|101〉+ Re〈100|ρ|011〉) (4.104)

which leads to the following bound

CGME ≥C3,2 − 4
(√
〈001|ρ|001〉〈110|ρ|110〉 (4.105)

+
√
〈010|ρ|010〉〈101|ρ|101〉+

√
〈011|ρ|011〉〈100|ρ|100〉

)
.

This bound is tight for the GHZ state, which it was tailored to. Explicitly this means that

BGME(|ψGHZ(3,2)〉〈ψGHZ(3,2)|) = CGME(|ψGHZ(3,2)〉〈ψGHZ(3,2)|) . (4.106)

Again we use our white noise model, i.e.

ρnoise = p|ψGHZ(3,2)〉〈ψGHZ(3,2)|+
1− p
d3

1, (4.107)

to find the noise resistance of for this example. We find that the state is still detected to be genuinely
multipartite entangled up to a value of pcrit = 3

5 .
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Qutrits

For the case of qutrits we have the following bound that was shown in [156, 157], written down
explicitly it reads

CGME ≥
2√
3

(
Re e〈000|ρ|111〉+ Re e〈111|ρ|222〉+ Re e〈222|ρ|000〉 (4.108)

−
√
〈001|ρ|001〉〈110|ρ|110〉 −

√
〈010|ρ|010〉〈101|ρ|101〉 −

√
〈100|ρ|100〉〈011|ρ|011〉

−
√
〈112|ρ|112〉〈221|ρ|221〉 −

√
〈121|ρ|121〉〈212|ρ|212〉 −

√
〈122|ρ|122〉〈211|ρ|211〉

−
√
〈002|ρ|002〉〈220|ρ|220〉 −

√
〈020|ρ|020〉〈202|ρ|202〉 −

√
〈022|ρ|022〉〈200|ρ|200〉

)
.

Already here with qutrits the bound amounts to a quite cumbersome expression, namely

C3,3 = 〈0̃0̃0̃|ρ|0̃0̃0̃〉+ 〈1̃1̃1̃|ρ|1̃1̃1̃〉+ 〈2̃2̃2̃|ρ|2̃2̃2̃〉+ 〈0̃1̃2̃|ρ|0̃1̃2̃〉+ 〈1̃2̃0̃|ρ|1̃2̃0̃〉+ 〈2̃0̃1̃|ρ|2̃0̃1̃〉 (4.109)

+ 〈1̃0̃2̃|ρ|1̃0̃2̃〉+ 〈0̃2̃1̃|ρ|0̃2̃1̃〉+ 〈2̃1̃0̃|ρ|2̃1̃0̃〉 − 〈0̃0̃1̃|ρ|0̃0̃1̃〉 − 〈0̃1̃0̃|ρ|0̃1̃0̃〉 − 〈1̃0̃0̃|ρ|1̃0̃0̃〉
− 〈2̃2̃0̃|ρ|2̃2̃0̃〉 − 〈2̃0̃2̃|ρ|2̃0̃2̃〉 − 〈0̃2̃2̃|ρ|0̃2̃2̃〉 − 〈1̃1̃2̃|ρ|1̃1̃2̃〉 − 〈1̃2̃1̃|ρ|1̃2̃1̃〉 − 〈2̃1̃1̃|ρ|2̃1̃1〉
− 〈0̃0̃2̃|ρ|0̃0̃2̃〉 − 〈0̃2̃0̃|ρ|0̃2̃0̃〉 − 〈2̃0̃0̃|ρ|2̃0̃0̃〉 − 〈1̃1̃0̃|ρ|1̃1̃0̃〉 − 〈1̃0̃1̃|ρ|1̃0̃1̃〉 − 〈0̃1̃1̃|ρ|0̃1̃1̃〉
− 〈2̃2̃1̃|ρ|2̃2̃1̃〉 − 〈2̃1̃2̃|ρ|2̃1̃2̃〉 − 〈1̃2̃2̃|ρ|1̃2̃2̃〉

=
2

3

(
Re〈000|ρ|111〉+ Re〈000|ρ|222〉+ Re〈001|ρ|220〉+ Re〈002|ρ|110〉 (4.110)

+ Re〈002|ρ|221〉+ Re〈010|ρ|121〉+ Re〈010|ρ|202〉+ Re〈011|ρ|122〉
+ Re〈011|ρ|200〉+ Re〈012|ρ|120〉+ Re〈012|ρ|201〉+ Re〈020|ρ|101〉
+ Re〈020|ρ|212〉+ Re〈021|ρ|102〉+ Re〈021|ρ|210〉+ Re〈022|ρ|100〉
+ Re〈022|ρ|211〉+ Re〈100|ρ|211〉+ Re〈101|ρ|212〉+ Re〈102|ρ|210〉
+ Re〈110|ρ|221〉+ Re〈111|ρ|222〉+ Re〈112|ρ|220〉+ Re〈120|ρ|201〉

+ Re〈121|ρ|202〉+ Re〈122|ρ|200〉 −
∑
i

〈i|ρ|i〉︸ ︷︷ ︸
=1

)
.

Here we have the resulting bound
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CGME ≥
2√
3

[(3

2
C3,3 + 1−

√
〈001|ρ|001〉〈220|ρ|220〉 −

√
〈002|ρ|002〉〈110|ρ|110〉 (4.111)

−
√
〈002|ρ|002〉〈221|ρ|221〉 −

√
〈010|ρ|010〉〈121|ρ|121〉 −

√
〈010|ρ|010〉〈202|ρ|202〉

−
√
〈011|ρ|011〉〈122|ρ|122〉 −

√
〈011|ρ|011〉〈200|ρ|200〉 −

√
〈012|ρ|012〉〈120|ρ|120〉

−
√
〈012|ρ|012〉〈201|ρ|201〉 −

√
〈020|ρ|020〉〈101|ρ|101〉 −

√
〈020|ρ|020〉〈212|ρ|212〉

−
√
〈021|ρ|021〉〈102|ρ|102〉 −

√
〈021|ρ|021〉〈210|ρ|210〉 −

√
〈022|ρ|022〉〈100|ρ|100〉

−
√
〈022|ρ|022〉〈211|ρ|211〉 −

√
〈100|ρ|100〉〈211|ρ|211〉 −

√
〈101|ρ|101〉〈212|ρ|212〉

−
√
〈102|ρ|102〉〈210|ρ|210〉 −

√
〈110|ρ|110〉〈221|ρ|221〉 −

√
〈112|ρ|112〉〈220|ρ|220〉

−
√
〈120|ρ|120〉〈201|ρ|201〉 −

√
〈121|ρ|121〉〈202|ρ|202〉 −

√
〈122|ρ|122〉〈200|ρ|200〉

)
−
√
〈001|ρ|001〉〈110|ρ|110〉 −

√
〈010|ρ|010〉〈101|ρ|101〉 −

√
〈100|ρ|100〉〈011|ρ|011〉

−
√
〈112|ρ|112〉〈221|ρ|221〉 −

√
〈121|ρ|121〉〈212|ρ|212〉 −

√
〈122|ρ|122〉〈211|ρ|211〉

−
√
〈002|ρ|002〉〈220|ρ|220〉 −

√
〈020|ρ|020〉〈202|ρ|202〉 −

√
〈022|ρ|022〉〈200|ρ|200〉

]
.

This bound is as the first one corresponding to the GHZ state, in this case |ψGHZ(3,3)〉. For the
white noise model

ρnoise = p|ψGHZ(3,3)〉〈ψGHZ(3,3)|+
1− p
d3

1 (4.112)

we find a resistance up to pcrit = 32
59 . Such a value is attainable in modern quantum optics

experiments [174].



Chapter 5

Thermodynamics & Information

Thermodynamics stands out among all the theories that we consider valid within the physics. First,
it survived throughout the three centuries since being established without major changes. Second,
it was created hands-on, not in order to demystify the world but rather to exploit it more efficiently.
Third, it is somehow scale invariant, as far as we know there is no region of validity (except that
it has a probabilistic character). Fourth, it is independent of the physical carriers, it doesn’t care
about what happens on the particular systems on the microscale, but rather gives us a picture on
an abstract macroscopic level.

Information theory shares all these properties with Thermodynamics, except the first one. As
it was not created as physical theory and later became generalised by quantum information theory.
This similarity may be the reason why the interaction between these two theories has been a fruitful
one during the last decades. Information theoretic tools where used to strengthen and elucidate the
very basis of thermodynamics, as for example the maximum entropy principle. Also the other way
around thermodynamics has contributed to understand information theoretic tasks, e.g. through
Landauer’s principle. Together, they managed to resolve longstanding paradoxes in physics like
Maxwell’s demon.

Before we continue the discussion, let us state the laws of thermodynamics. As there exists
various versions of the different laws and also discussion on whether their number can be reduced,
we will introduce them in an informal way.

Zeroth law If a system is in thermal equilibrium with each of two other systems, then these two other
systems are in thermal equilibrium with each other.

First law The change of internal energy of a system is equal to the difference between the accumulated
heat and the work done.

Second law Heat cannot flow from a colder to a warmer system without any other associated change.

Third law The entropy of a system approaches a constant when approaching absolute zero temperature.

These laws have the following direct implications. The zeroth law implies that we can define
the concept of temperature. The first law is equivalent to prohibiting the existence of perpetual

65
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motion machines of the first kind, i.e. machines that produce work without the input of energy.
The second law is equivalent to the statement that perpetual motion machines of the second kind,
i.e. machines whose sole purpose is to transform heat into work. The third law implies that it is
impossible to reach a temperature of absolute zero in a finite amount of operations.

We see that thermodynamics and information theory not only share important figures of merit
as for example entropy. They both work very similarly for us, in the sense that they describe the
limits of nature on a very abstract level. One of the questions this chapter deals with, is what
happens when also quantum theory is taken into account.

Our understanding of this interaction is far from complete and research on this topics has kept
scientists busy for the last years. In the next sections we will review the interaction between quan-
tum information theory and thermodynamics. We will end this chapter with thoughts on how to
go a step further.

5.1 Demons & Principles

The genesis of thermodynamics is intimately connected with the concept of work extraction. As
mentioned, humanity was already using the heat flow between systems of different temperature to
gain mechanical work before a complete and consistent theory of such was developed. While so far
all who have tried to build a perpetual motion machines failed, back in the 19th century James
Clerk Maxwell pointed out a fictional entity that could break the second law [175]. This entity
nowadays known as Maxwell’s demon, he introduced in the following way:

...if we conceive a being whose faculties are so sharpened that he can follow every
molecule in its course, such a being, whose attributes are still as essentially finite as our
own, would be able to do what is at present impossible to us. For we have seen that the
molecules in a vessel full of air at uniform temperature are moving with velocities by
no means uniform, though the mean velocity of any great number of them, arbitrarily
selected, is almost exactly uniform. Now let us suppose that such a vessel is divided
into two portions, A and B, by a division in which there is a small hole, and that a
being, who can see the individual molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from A to B, and only the slower ones to pass from B
to A. He will thus, without expenditure of work, raise the temperature of B and lower
that of A, in contradiction to the second law of thermodynamics. [176]

This means that the demon has a container filled with a gas at a certain temperature. The
container is separated into two parts and the separating wall has a little frictionless trap door that
can be operated by the demon. Furthermore, the demon has the ability to see and calculate the
movement of all the individual molecules in the container. Now such an entity could act in such a
way, that whenever a molecule with a velocity higher than the average comes from left and when-
ever a molecule with a velocity smaller than the average comes from right, it opens the trap door.
Otherwise it keeps the door shut. In principle that would lead to the peculiar situation, that right
side of the container will increase its temperature (as the average velocity of the molecules within
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increases) and the left side will decrease its temperature (as the average velocity of the molecules
within decreases), thus establishing a heat flow from cold to warm. Such an entity could therefore
violate the second law of thermodynamics and would be able to construct a perpetual motion ma-
chine.

The resolution of this paradox needed various steps. The first of these steps goes in importance
far beyond resolving the apparent violation of the second law, it is the introduction of Landauer’s
principle. In 1961 Rolf Landauer, at that time working for IBM, wrote an article with the title
’Irreversibility and Heat Generation in the Computing Process’ [177]. In this article, he argued that
there is a fundamental thermodynamic cost associated to the erasure of information.

Theorem 5.1.1 (Landauer’s principle). The minimum amount of heat dissipation required to erase
one bit of information is

kB T ln2 . (5.1)

For proofs see [177, 233]. This remarkable observation is nowadays widely accepted as a natural
law. Among other things, it led to the introduction of reversible computing in order to circumvent
it. As the traditional architecture for computers involved logical operation such as the AND oper-
ation, which in its action erases some information, scientists developed several schemes that allow
for a completely reversible way of computing, therefore showing that in principle computation does
not have any intrinsic cost [179]. One of these scientists was Charles Bennett, who was also the one
resolved the paradox brought about by Maxwell’s demon.

Bennett pointed out that the demon must have some sort of memory where all the steps he
does are recorded and that it will eventually run out of space, therefore having to erase some of
this information. Due to this process of erasure the demon has to expend at least as much work as
it has gained through sorting the particles [180].

5.2 Quantum Thermodynamics

Thermodynamics began with the advent of steam engines and the need of an accurate description
of such. Now we are entering the age of quantum machines, a result of the fruitful interaction of
quantum information theory and thermodynamics. This interaction resulted in a field of research
we can call quantum thermodynamics. At first such an approach might seem unreasonable but it
turns out that there exists an intricate connection between the main figures of merit. Correlation
in the case of quantum information theory and Work in the case of thermodynamics. In this section
we will discuss this relationship and also quantum machines.

Let us begin by defining the most important quantities and concepts that will be used in the
following.

Definition 5.2.1 (Average Energy). The average (internal) energy of a system in state ρ ∈ H with
Hamiltonian H is given by

E(ρ) := 〈H〉 = Tr (Hρ) . (5.2)
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Operations on our system that preserve the (internal) energy of the state are called energy-
preserving.

Definition 5.2.2 (Energy-preserving unitaries). Given a state ρ ∈ H and a Hamiltonian H we call
a unitary U (on average) energy-preserving, iff

E(ρ) = Tr (Hρ) = Tr
(
H
(
UρU†

))
= E(UρU†) (5.3)

For the case that the unitary operation U commutes with the Hamiltonian H, i.e. [U,H] = 0,
we directly get that the (internal) energy of a system cannot be changed through the cyclicity of
the trace.

To avoid ambiguity between entropies that we denoted with the symbol H and the Hamiltonians
that we assigned the same symbol, let us redefine entropy in the context of quantum thermody-
namics. We will do so by choosing a definition for the von Neumann quantities in more physical
fashion, using the natural logarithm ln := loge.

Definition 5.2.3 (Entropy). The entropy of a system in state ρ ∈ H is given by

S(ρ) := −Tr (ρ ln(ρ)) . (5.4)

Analogously we will define the mutual information in this context.

Definition 5.2.4 (Mutual Information). The mutual information between subsystem A and B of
a system in state ρAB ∈ HAB is given by

I(A : B)ρ := I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (5.5)

As before we will use the mutual information in order to quantify the correlation between two
subsystems A and B. Now that we know how to calculate the (internal) energy and the entropy of
a state in this context, we can also compute the free energy of a system.

Definition 5.2.5 (Free Energy). The free energy of a system in state ρ ∈ H with Hamiltonian H
is given by

F (ρ) := E(ρ)− T S(ρ), (5.6)

where is T is the temperature.

There exists a state that is special in many regards, as it fulfills the maximum entropy principle,
it is called the Gibbs state [225].

Definition 5.2.6 (Gibbs state). Given a Hamiltonian H the Gibbs state is defined as

τ(β) := Z−1eβH (5.7)

where β = 1
T is the inverse temperature and Z = Tr(eβH) is the partition function.
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As discussed, entanglement is an important resource when it quantum information processing.
Specifically Entanglement theory can be formulated as a resource theory. The core of resource
theories are what is called free resources and free operations. In the case of Entanglement theory
these are separable states and LOCC (local operations and classical communication). In quan-
tum thermodynamics the free resources are Gibbs states and the free operations depend on what
model of thermodynamics is chosen [181]. This makes sense also from a everyday standpoint, as
our environment is filled with systems that have a well-defined temperature. Bringing systems into
thermal contact will in general lead to a thermalisation of both. In the previous chapter we had the
Entanglement of Formation (EoF), a quantity specifying a rate of conversion between the resource
and the target state. It can be shown that EoF, in case one considers Entanglement theory as a
resource theory, constitutes a monotone with respect to the free operations, i.e. LOCC. In the case
of quantum thermodynamics the free energy also constitutes a monotone, taking thermal operations
to be the free operations [226].

Definition 5.2.7 (Thermal operations). We call thermal operations, all operations that can be
written as

T (ρA) = TrÃ

(
UAB (ρA ⊗ τ(β))U†AB

)
(5.8)

where Ã is any partition of system AB and UAB is energy-preserving.

As it is still an ongoing discussion in the community and an active field of research to find
a well-suited definition for the notion of work in quantum thermodynamics [181]. We will use a
pragmatic approach to this matter and talk about the work cost of unitaries, which is the difference
in energy between the final and the initial state.

Definition 5.2.8 (Work cost). Given a state ρ ∈ H, a Hamiltonian H and a unitary transformation
U , we have that work cost of the unitary U is given by

W (U) := Tr
(
H
(
UρU†

)
−Hρ

)
= E(ρfinal)− E(ρinitial) . (5.9)

5.3 Work and correlations

quantum thermodynamics can give us interesting insights about the connection of information and
energy. Above we have seen that the Gibbs state can assumed to be available freely. If we consider
multiple systems, that means that we have a product state of Gibbs states as the free resource. In
order to create correlations between the systems we will need to invest energy and perform global
transformations on the target systems. In this section we want to show that there is a fundamental
work cost associated to every bit of correlation [182] and further that every bit of correlations allows
us to gain work [183].

5.3.1 Work for correlations

The setup is the following [182]. We have two uncorrelated systems S1 and S2 that are thermalised
with a heat bath of temperature T . This means that we are given the state of the system τS =
τ(β)S1⊗τ(β)S2 and of the bath τB = τ(β)B , which are free resources. The overall state is therefore
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Figure 5.1: Schematic illustration of the setup. [56]

τSB = τS ⊗ τB . Also we assume that the total Hamiltonian has the form H = HS1
+ HS2

+ HB .
In order to correlate the systems S1 and S2 we will apply a global unitary USB and look at its
minimum work cost. First, we observe that for any product state, i.e. states that can be written
as ρproduct = ρA ⊗ ρB we have that

I(A : B)ρproduct = S(A) + S(B)− S(AB)︸ ︷︷ ︸
=S(A)+S(B)

= 0 . (5.10)

We will then proceed to compute the work cost of the unitary USB , see definition 5.2.8, depending
on the increase of correlation between S1 and S2, quantified in terms of the mutual information.
Let us start by direct computation,

Wcorr = Tr
(
H
(
USBτSBU

†
SB

)
−HτSB

)
= ∆ES + ∆EB . (5.11)

Note that the overall entropy is left invariant, i.e. S(τSB) = S(USBτSBU
†
SB) = S(ρSB), such

that we can rewrite above expression in terms of the change in free energy
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Wcorr = ∆ES + ∆EB (5.12)

= ∆FS + ∆FB + T (S(ρS) + S(ρB)− S(τS)− S(τB)) (5.13)

= ∆FS + ∆FB + T (S(ρS) + S(ρB)− S(τSB)) (5.14)

= ∆FS + ∆FB + T (S(ρS) + S(ρB)− S(ρSB)) (5.15)

= ∆FS + ∆FB + TI(S : B)ρ . (5.16)

We can now split the ∆FS into the free energy change of the systems S1 and S2 and their
correlation,

∆FS = ∆FS1
+ ∆FS2

+ TI(S1 : S2)ρ , (5.17)

and combine it with the expression (5.16), s.t.

Wcorr = ∆FS1
+ ∆FS2

+ ∆FB + TI(S : B)ρ + TI(S1 : S2)ρ . (5.18)

As all quantities on the right hand side are strictly positive we can assert that,

Wcorr ≥ TI(S1 : S2)ρ , (5.19)

This means that ever bit of correlation costs at least T I(S1 : S2) in work. In [182] the authors
also show that it is possible to saturate this bound just using a simple set of operations.

5.3.2 Work from correlations

Now we want to look at the inverse question. Now that we have gained the correlations I(S1 : S2) we
want to see what is the maximum amount of work Wextra that we can gain from these correlations.
So the setup remains the same only that our initial state now is ρcorr with mutual information
I(S1 : S2) and we want to apply a unitary USB such that we get τSB as the final state. In [183] the
authors show that in this scenario the maximum extractable work is given by

Wextra ≤ TI(S1 : S2)ρ . (5.20)

We observe that we can assign a work value, and therefore an energy value, to every bit of
correlation, may it be in terms of creating it or in terms of extracting work from it.

5.4 Quantum machines

As in the macroscopic we want to be able to build and describe machines in the microscopic. These
thermal machines are the quantum versions of heat engines or refrigerators. As we are still limited
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by the laws of thermodynamics, we have to use at least to heat baths of different temperature in
order to make machines that are of interest to us.

The maser invented in the nineteen sixties can actually be seen as the first quantum thermal
machine, as it basically works as a heat engine [184]. Overviews on the topic of quantum machines
can be found in [185] and in [181].

In general, there are two regimes one can focus on. One is an analysis in terms of the cyclic
behaviour of systems in contact with thermal baths and a characterisation in terms of the steady-
state that is given by the flows of heat and work in the limit for long times. The other is called the
transient regime, is dealing with how the system reaches its stationary state.

Having two heat baths, allows one to consider the first bath as the environment with its ambient
temperature, such that the second bath then constitutes an out of equilibrium state with respect
to the first bath. The aim is to produce the target quantity (e.g. work, heat or refrigeration) at an
optimal rate. In this perspective the quantum engine acts as a catalyst enabling the workings of
the machine.

Note that in the near future, quantum machines may become important regarding the facilita-
tion of rapidly emerging technologies such as nano-technology and quantum information processing
devices. Thus a complete understanding of the specific behaviour and also the correlations within
is of high importance [181].

The smallest quantum engines that are possible go as little as being just a single qutrit or being
comprised of 2 qubits [181]. Despite their small size they can still approach the maximal possible
efficiency, Carnot efficiency. In the next section the two-qubit heat engine introduced in [223] will
be discussed in detail.

5.4.1 Two-qubit heat engine

In this section the two-qubit engine introduced in [223] is reviewed. In the next chapter we will use
this engine to power the autonomous quantum clock that will be presented therein. This engine
is not limited to this use case, others include refrigeration, heating or providing mechanical work
[186, 187].

The cornerstone of the engine are two qubits that are coupled to heat baths of different tem-
perature. One of the qubits, that from now on we will call ’hot’, has an energy gap of Eh and is
connected to the heat bath with temperature Th. The other qubit, the ’cold’ one, has an energy
gap of Ec < Eh and is connected to a heat bath of temperature Tc. Both qubits are coupled to
a d-dimensional ladder with equally spaced energy levels, that are spaced with Ew. The ladder is
assumed to not interact only with the two qubits it is coupled to and not any heat baths. Thus we
have that the following free Hamiltonian for the overall system.
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Hfree =
∑
j=h,c

Ej |1〉j 〈1|j +

d−1∑
k=0

kEw |k〉w 〈k|w , (5.21)

where we have introduced the notation that the index j = h, c specifies whether it is the ’hot’
or the ’cold’ system, the states |k〉w correspond to the k-th energy level in the ladder system and
|1〉j stands for the excited states of the qubits, respectively.

Our goal is to run the engine as a heat engine, we will therefore introduce the following constraint,

Eh = Ec + Ew . (5.22)

In this way our machine is enabled to convert the energy of an excited ’hot’ qubit to precisely
one excitation of the ’cold’ qubit and one of the ladder. This constraint means that our engine has
to run in resonance. Otherwise it would not be possible to exchange energy between the qubits
and the ladder. This also implies that the energy levels, |0〉c |1〉h |k〉w and |1〉c |0〉h |k + 1〉w, are
degenerate.

The following interaction Hamiltonian leads exactly to the desired interplay between the systems

Hint = g

d−1∑
k=0

(|1〉c |0〉h |k + 1〉w 〈0|c 〈1|h 〈k|w + h.c.) , (5.23)

where g is the coupling constant and h.c. stands for Hermitian conjugate. As a consequence of
the demanded constraint on the energies (5.22), we observe that the engine can even be operated
in the weak-coupling regime, which is characterised by the relation g � Ec, Ew.

This illustrates what the interaction Hamiltonian (5.23) does, but let us also describe it in plain
english. Due to the difference in temperatures between the two heat baths we get a heat flow from
’hot’ qubit at Th to the ’cold’ qubit at Tc. The constraint (5.22) on the energies that we demanded
enables this heat flow. Specifically this implies that we employ one quantum of energy Eh from
the ’hot’ qubit in order to excite the ’cold’ qubit, using up Ec. The leftover energy is transferred
to the ladder, where it equals exactly one excitation Ew = Eh − Ec. This describes the first term
of the the interaction Hamiltonian (5.23), we call it ’forward’ process. The Hermitian conjugate
part in the interaction Hamiltonian (5.23) does exactly the reverse, it takes one quantum of energy
from both the ladder and the ’cold’ system in order to excite the ’hot’ system. We will call this
’backwards’ process.

As we want the engine to deliver work, i.e. raise the energy of the ladder, we want the ’forward’
process is more likely than the ’backwards’ process. The authors of [223] show that this can be done
by choosing the parameters in the following way. If we denote p1 the probability of occupying the
state |0〉c |1〉h and p0 the probability of occupying the state |1〉c |0〉h, we can add a bias favouring
the ’forward’ process
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|0〉c |1〉h |k〉w → |1〉c |0〉h |k + 1〉w , (5.24)

by simply choosing p1 > p0.

If we operate the engine in the weak-coupling regime and we observe that both the ’cold’ and
the ’hot’ qubit are very close to the Gibbs states corresponding to the respective temperatures of
the heat baths, we will come to the conclusion that the probabilities p1 and p0 only depend on the
temperatures of the respective heat bath and the energies gaps of the two qubits.

This way we can introduce the bias towards the transition (5.24) by assuming that

Eh
Th

<
Ec
Tc

. (5.25)

The fact that the interplay of the two coupled qubits with the ladder is ruled by the two states
|0〉c |1〉h and |1〉c |0〉h has led the authors of [223] introduce what they call the machine’s virtual
qubit, with the former two states as the two levels. We can now characterise this virtual qubit by
itself. Specifically this means associating a virtual temperature

Tv :=
Eh − Ec

βhEh − βcEc
, (5.26)

with βc,h = 1/Tc,h and furthermore, a quantity that will be called the population bias, defined as

Zv :=
p0 − p1

p0 + p1
= tanh(βvEw/2) . (5.27)

Equipped with this newly acquired concept of the virtual qubit and its associated quantities,
we can describe the functioning of the engine as follows. If the constraint (5.22) is fulfilled, i.e. we
have that the difference between the energy gaps of the ’cold’ and the ’hot’ qubit is resonant with
ladder’s energy spacing, we can see the action of the engine as placing a load in thermal contact
with the virtual qubit. The load then effectively ’thermalises’ with the virtual qubit, whose virtual
temperature is given by the population ratio p1/p0 = e−βvEw . If we have a negative virtual tem-
perature Tv, or equivalently a negative population bias Zv, this ’thermalisation’ process makes the
load to climb up the ladder. One can show that whenever (5.25) is satisfied, (5.26) and (5.27) will
be negative. Note the details thermalisation model ruling the coupling between the different parts
of the engine do not affect us here, as we have based our analysis only on the statics of the model.



5.5. COMPLEXITY AND EMERGENCE 75

5.5 Complexity and Emergence

Up to now, we have discussed different entropic measures and information quantifiers. They all,
however, make use of events that did not take place [188], often referred to as counterfactuals.
There is a measure of information that does not do so, the Kolmogorov complexity. Given an
input string, its value is equal to the length of the shortest program that computes the string as an
output on a universal Turing machine [190, 191]. This is a very powerful tool, knowing its value
would solve a lot of problems for us, e.g. a proper definition for randomness or perfect lossless
compression, just to name two. It seems that this quantity might be too powerful for us, as it is
provably uncomputable [189] (for large enough strings). Let us look at its definition.

Definition 5.5.1 (Kolmogorov complexity). Given a infinite binary string x and a universal Turing
machine U , the Kolmogorov complexity is defined as

K(x)U := min
p:U(p)=x

|p| . (5.28)

One can show that this definition is independent of the Turing machine used, as their difference
can always be upper bounded by an universal constant c [191], i.e. given universal Turing machines
U1 and U2 it holds that,

|K(x)U1 −K(x)U2 | ≤ c . (5.29)

This can be seen as follows, given the shortest program to compute a string in one programming
language we can always translate it into the shortest program in another programming language
without loosing too much. This means that we can drop the subscript by using a fixed Turing ma-
chine and all constant overheads. Furthermore, it is possible to define a Kolmogorov complexity for
finite strings by encoding them into infinite strings. Take the finite binary string a[n] := (a1, . . . , an)
for example, we can turn it into an infinite string a := (a1, . . . , an, 0, . . . , 0, . . . ), by just adding in-
finitely many 0 to it. Now, we look at the scaling of K given such a string a [191, 192]. We call a
incompressible if

K(a) ≈ n :⇔ lim
n→∞

K(a[n])

n
= 1 (5.30)

and if

K(a) ≈ 0 :⇔ lim
n→∞

K(a[n])

n
= 0⇔ K(a[n]) = o(n) (5.31)

we call it computable, in this sense incompressibility is the extreme form of uncomputability
[192]. Now, that we have an idea of what the Kolmogorov complexity looks like, we can try to
use it as a descriptive tool for our observations of the world. For this argument we quantise our
perception of the world by dichotomic questions, all observations that we can make can therefore
be described by a binary string. The Kolmogorov complexity would then give us the length of the
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shortest description for any possible observation. In a world comprised of binary strings one can
not only describe correlations that are stronger than classical possible, but also do thermodynamics
[193].

Furthermore, imagine a steaming cup of coffee and milk being poured into it. At first the liquid
is uniformly black, then their is a period in which milk and coffee have not merged yet, sprinkles of
black, white and all kind mixtures thereof, in a chaotic dance. Waiting long enough the situation
will have settled down and the liquid will have a uniform colour again. While in the world of
strings, the situations in the beginning and in the end may seem to be less complex, they are not.
Let us use Kolmogorov sufficient statistics in order to describe this example [194]. This allows use
to quantify the exploitable ’structure’, for this we want that Mk is the smallest set such that o ∈Mk

and K(Mk) ≤ k holds for k ∈ N. Moreover, we define k0 as the value where the function log |Mk|
starts to have a slope with value −1. In plain english, k0 would be the point where the string o
becomes a typical element of the set Mk0 , i.e. there is no more structure that we could exploit.
Now we have that

K(o) = k0 + log |Mk0 | = K(M(o)) + log|M(o))| , (5.32)

where we have defined M(o) := Mk0 [211]. M(o) can be seen as the macrostate that emerged
from the underlying microstate o. We have finally arrived at the point where complexity and
emergence meet. Before we continue the discussion, note that K(o) overall is at least a non-
decreasing function according to the second law of thermodynamics that can be derived in this
context [193, 211]. Whether it can increase at all, depends on the existence of randomness.

One can think of all our natural laws as short programs that together with the initial conditions
serve as an input for a Turing machine, which then outputs predictions. This simplistic view at least
holds true for the classical laws of physics, as for quantum systems we still do not know whether
there exists an efficient way to simulate them with a Turing machine. In such a case it may come in
handy to find sound definitions of quantum models for the Kolmogorov complexity and the Turing
machine [195]. Maybe it is even possible to show that even the laws of nature themselves naturally
emerge from an underlying structure [196, 197]. Independently of these questions, it would be very
interesting to see whether one can find criteria that characterise the phenomenon of emergence. For
such questions thermodynamics provides a good testbed. Quantities like temperature emerge from
a coarse-graining of the microscopical dynamics. While it is very hard to assign a temperature to
single microscopic systems, except the thermal states and qubits (with two values it uniquely fix
an exponential distribution), macroscopically it can be easily calculated by an averaging of their
velocities. Time, much alike temperature, could itself be an emergent quantity. The problem is,
that in general there are infinitely many ways to coarse-grain over microscopic quantities, but not
all will lead to physically relevant quantities. Furthermore, ideally we would like to have pro-
grams of constant length (natural laws) that accurately describe their behaviour. In general their
will most likely be a trade-off between the predictive and the explanatory power for such theories,
the question is, if we can find ways to determine under which circumstances we are allowed to trade.



Chapter 6

Time

Time is a mysterious concept. We all perceive its passage, but for science, since its inception, it has
been hard to capture it. So this chapter begins with the same quote that stands at the beginning
of the chapter of time in [198]. The quote is a comment that Heisenberg wrote in a letter to Pauli
in November 1925:

Your problem of the time sequence plays, of course, a fundamental role, and I had figured
out for my own private use (Hausgebrauch) something about it. First I believe that one
can distinguish between a coarse and a finer time sequence. If a point in space does not
assume in the new theory a definite role or can be formulated only symbolically, then
the same is true for an instant of time of an event. But there always will exist a coarse
time sequence, like a coarse position in space - that is, within our geometric visualisation
one will be able to carry out a coarse description. I think it might be possible that this
coarse description is perhaps the only thing that can be demanded from the formalism
[of quantum mechanics].[199]

This comment points at the special role that time plays in quantum theory. It is the only param-
eter that has survived the transition to quantum theory unaltered (speaking in an non-relativistic
context). While quantum theory has its roots in the quantisation of nature, the description of
time with in it, is not. It is in information theory though, that time is merely a sequence of steps.
In quantum theory there is no observable for time. The impossibility of such an observable was
famously proven by Pauli [204]. Namely, the introduction of such a time observable would result
in an energy operator (Hamiltonian) which has an unbounded spectrum from above and below.

This chapter will take a pragmatic approach to the understanding of time within quantum in-
formation theory, namely it will try to describe and analyse our abilities to measure time, as this
is also so far the only way we are able to measure time, as a mere sequence of clicks.

So in the following we will discuss time measuring devices, i.e. clocks, and try to find the mini-
mal resources one needs in order to be able to measure time.

77
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6.1 Clocks

Despite the fact that we use quantum systems to construct the most advanced clocks [201, 202, 203],
the concept of time itself remains elusive in quantum theory. Since the inception of quantum theory
this issue has been studied in various different forms. Specially the connection to energy, which
is the time-invariant quantity for closed systems, has brought about fruitful results in terms of
limitations on the time needed for quantum system to evolve. These results are now known under
name of quantum speed limits [204, 205, 206, 207, 208, 209]. A different direction of studying the
notion of time in quantum theory is to promote it to a parameter that is genuinely quantum, rather
then continue treating it as classical [210, 211, 212, 213, 214]. This way the evolution of quantum
systems is encapsulated in correlations.

Figure 6.1: Schematic illustration of the Quantum Hourglass [198].

Coming back to the topic of how to measure time, various models for how to use quantum
systems for this task have been proposed in the past [215, 216, 217, 218]. All of these models for
quantum clocks share the caveat that they need a duly chosen initial state and unitary evolution
to function properly. These models in general can be considered as measuring a time interval,
therefore having a functionality more comparable to a stopwatch than a clock. The precision of
such stopwatches can be related to the properties of the clock, for example its dimension [218].
They, however, rarely specify neither the procedure of preparation nor the measurement. In prin-
ciple, they can be used as timing devices for the implementation of a given interaction leading to
a unitary operation. As they need very accurate timing information themselves for the application
of the required unitary transformation, this leads to a sort of circularity in the argument.
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So let us have a look what features we want to demand for a device to call it a clock. In contrast
to a stopwatch, a clock should be able to continuously give a time reference. It is therefore essential
for any complete model of a clock to incorporate the process of information read-out. This leads to
the requirement that a clock has to be at least bipartite [198]. See figure 6.1 for the first illustration
of such models [198, 219].

In the following we will describe a clock as follows. We will call the first part of the clock,
pointer. It is the subsystem to whose dynamics are effectively determined by passage of time and
therefore will serve as the reference for the clock. The second part, the register, has the task to
store the information obtained on the evolution of the pointer system. This ideally should be done
in terms of classical information, allowing an external observer to access it. Summing up, we have
the pointer system which is designed such that it produces a sequence of signals which are then
recorded by the register as ticks, as it can been seen in figure 6.2.

Figure 6.2: A pointer system generates a sequence of events that are recorded by the register [56].

One can observe that the workings of a clock lead to an asymmetric flow of information. This
is turn means that this process is irreversible and connects it to the second law of thermodynamics
[220], due to the production of entropy associated with irreversible processes. We can thus expect
that a system that is suitable to function as a clock will be connected to its tendency to produce
entropy. The exact link between these two properties has however not been shown yet.

The question that we are interested in first, is even more general than the asking for the rela-
tionship between the ability of a system to act as a clock and its propensity to produce entropy. It
is the question about the minimal resources that one needs in order to maintain a clock running.
We will answer this question in the next sections by presenting a model for a self-contained time
measuring device that works without the need for external control or timing information. Such
clocks we will call autonomous clocks. These clocks needs to contain an isolated system whose
evolution is determined by a time-independent Hamiltonian and the resources used to power the
clock should themselves not require any type of timing information to be prepared.

In particular we will analyse autonomous clocks that a driven by the heat flow between two
thermal reservoirs of different temperature. This constitutes the minimal non-equilibrium resource.
Specifically, we will discuss the physics of the mechanisms the make the clock work, this includes its
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initialisation and power supply. To achieve this we will exploit the results on autonomous thermal
machine [221, 222, 223] and make use of thesee machines for the purpose of producing a series of
regular ticks. This enables us to show that the production of entropy of the clock ultimately bounds
its performance.

This leads to the question about the figures of merit we use to quantify the performance of a
clock. Here two quantities have turned out to be useful [198, 219, 10]. Namely the following two:

Resolution — quantifies how frequently a clock ticks

Accuracy — quantifies how many ticks a clock provides before its uncertainty becomes greater than
the average time between ticks

We will show in the coming sections that only large enough rate of entropy production allows
one to reach given levels of resolution and accuracy simultaneously. If the rate is not high enough
a trade-off between both of them appears. This means that one has to sacrifice some resolution
in order to attain the desired level of accuracy, or vice versa. Moreover, we will see that even
in a regime where the resolution of a clock is arbitrarily low, the entropy production still upper
bounds its accuracy. This hints at a fundamental connection between entropy production and the
clock’s arrow of time, as the relevant entropy production is solely that of the pointer system itself,
ignoring other processes as for example measurement or erasure of the register. This point will
be demonstrated by considering an explicit model for an autonomous clock and fully computing
its dynamics. It is then conjectured on the basis of general thermodynamic arguments, that such
trade-offs can be seen in any implementation of an autonomous clock.

6.2 Autonomous Quantum Clocks

As mentioned above, our goal is to find fundamental limitations of quantum clocks. Therefore, we
consider clocks that are complete and self-contained, i.e. autonomous clocks. In order to guaran-
tee fair bookkeeping, our devices should not be in need of any resource that itself requires timing
information. This assumption allows us to carefully account for all resources that needed for the
task of measuring time. In this section we will discuss autonomous clocks in general, while the next
section will introduce a particular model of such.

A general feature of autonomous clocks is that their evolution is given by a time-independent
Hamiltonian such that in the course of this evolution a sequence of ticks is produced that can be
recorded by the register. This is illustrated in figure 6.2. The process of transferring the informa-
tion of the pointer system to register should ideally be irreversible. Moreover, this process should
ideally happen spontaneously, ensuring that no external intervention or time-dependent coupling
is present. As we want that the flow of information is uni-directional, we need to have that the
probability of the spontaneous process happening is larger compared to the one of its time-reverse.
This implies that the free energy of the pointer system will decrease and thus an autonomous clock
will need some source of free energy in order continue producing ticks. This source of free energy
is necessary to keep the clock out of equilibrium.
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In theory any non-equilibrium quantum system has the ability to make the free energy available
that is necessary to run a clock. Unfortunately there is a large class of non-equilibrium states that we
have to exclude, as their preparation already requires the presence of a clock. The timing informa-
tion that is needed to prepare such resource states could for example be the period that a resonant
driving field has to be applied. As already mentioned such resources are excluded from our model,
in order to precent circularity in the arguments and to be able to carefully account for all resources
that are consumed. Although it is of no importance to the model, in practice it would desirable
for the used resources to be available abundantly in nature or to have an easy way to generate them.

One can argue that the minimal non-equilibrium resource that fulfils all above requirements is
given by two heat baths of different temperatures. In practice the presence of a single heat bath
is unavoidable, as this is given by the ambient temperature of the environment, which we will de-
note Tc. Moreover, is it possible to deterministically prepare a second heat bath at a temperature
Th > Tc not possessing any knowledge about the internal structure of the reservoir nor using any
operations that would need timing information. The reason behind this, is that any generic quan-
tum system (excluding not-integrable and many-body localised systems) will equilibrate towards
the thermal state [224], as it is given through the condition of maximal entropy [225].

Moreover, we have that any other potential resource for running our clock would have lower
entropy at the same energies and therefore require additional knowledge or control to in order to
be prepared. Thus, an equilibrated resource that features an average energy content that is higher
than that of the environment, is the minimal resource that can drive the clock out of equilibrium.
Our explicit model for an autonomous clock will hence be a quantum clock that is powered by
two thermal baths. We will conduct a quantitative analysis of such a clock in the next sections.
Nevertheless it needs to emphasised the concept of the autonomous clock is more general and the
explicit model with which we will deal in the following. There exist various different scenarios and
also resource states that could be considered as well [227].

6.2.1 Minimal thermal clock model

In this section we will consider a explicit model of a autonomous quantum clock wherein the pointer
system will be powered by the flow of heat between to thermal baths of different temperatures. In
particular we will use the quantum heat engine introduced in [223], that we have already discussed
in detail in section 5.4.1, in order to drive the pointer.

To recap, the machine is constructed by taking two qubits and independently couple them to
two different thermal baths. We have that the first qubit with the energy gap Eh is in thermal
contact to the hot heat bath at temperature Th, while the second qubit with the energery gap
Ec < Eh is in thermal contact to the cold heat bath with temperature Tc < Th. We will assume
that Tc is the ambient temperature of the environment. To end this recap of the machine’s design,
it is pointed out that the output of engine in terms of work, drives a load up a ladder, that consists
of d equally spaced energy levels, where the spacing between the levels is given by Ew = Eh − Ec.
Figure 6.4 illustrates this setup.

The gradient in temperature between the two thermal reservoirs induces a heat flow. This cur-
rent runs from the hot to the cold qubit and provides work to load, thereby generating an upwards



82 CHAPTER 6. TIME

Figure 6.3: We consider a pointer comprising a two-qubit heat engine that drives a thermally isolated
load up a ladder, whose highest-energy state undergoes radiative decay back to the ground state.
Photons are thus repeatedly emitted and registered by a photodetector as ticks of the clock.[56]

movement on the ladder. As mentioned in section 5.4.1, the machine’s working can be understood
as a resonant interaction between the load and a virtual qubit [223]. This virtual qubit is comprised
of two special states of the engine, namely the ones that couple to the ladder.

Working in a regime where the coupling between engine and ladder is small, we get a thermal
distribution of the populations in the two different states of the virtual qubit according to the
virtual temperature

Tv =
Eh − Ec

βhEh − βcEc
, (6.1)

where again we have that βc,h = 1/Tc,h. The ratio between the population of the virtual qubit’s
states is given by

p1

p0
= e−βvEw , (6.2)

with p0 denoting the population of the higher energy state, p0 denoting the population of the
lower energy state and βv = 1/Tv. Whenever the virtual qubit features a negative temperature,
called a population inversion, it causes the load to ’climb’ up the ladder. In this perspective the
load ’thermalises’ with the virtual qubit at the given virtual temperature. One can express the
virtual temperature in terms of the population of its energy levels,

Zv =
p0 − p1

p0 + p1
= tanh(βvEw/2). (6.3)

We will call this quantity the population bias of the virtual qubit. It will later play an essential
role in the characterisation of the performance of our clock.

As promised we will specify the interaction between the pointer system and the register. We
start to complete the picture by assuming that the top level of the ladder is unstable and can decay
to the ground state, thereby emitting a photon with the energy Eγ = (d− 1)Ew. The clock’s ticks
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are the detection events in the register that are caused by the arriving photons. Due to the presence
of the decay channel we also have the possibility of the inverse process happening. To circumvent
that, we assume that the background temperature is very small compared to the photons energy,
i.e. Tc � Eγ . This renders the probability of such an inverse process happening negligible.

Figure 6.4: Creative illustration of the minimal thermal clock [56].

To sum up, we have that the heat current in the engine steers the load up the ladder. When it
finally reaches the top level, a photon is emitted through the decay to the ground state. The process
then starts anew, through its repetition it creates a series of photons which are witnessed by the
register, hence making the clock tick. Note that the decay leading to the emission of the photon
depends on how the ladder’s energy evolves, as this evolution is probabilistic it in turn results in a
stochastic sequence of ticks. The resulting distribution of ticks will depend on the ’height’ of the
ladder, i.e. its dimension d, and the population bias of the virtual qubit Zv, proportional to the
driving force provided by the engine.

Depending on the actual values, the load can become ’smeared out’ over the ladder, which
means that there is a broad probability distribution over the energy levels, hence resulting in a
slowly and irregularly ticking clock. On the contrary, if we a nearly complete population inversion,
i.e. Zv → −1, the probability for the load moving downwards on the ladder becomes very small and
we get a clock that ticks faster in more regular time intervals. Lastly, figure 6.4 shows the workings
of the minimal thermal clock from a original perspective.

6.2.2 Performance of the clock

Now that we have established the model of the minimal thermal clock, we want to evaluate its per-
formance. Part of this evaluation is the analysis of the power consumption, which is fundamentally
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related to the entropy production of the clock. For the clock to tick, the engine must drive the
load up the ladder and in the process dissipates energy into the cold bath. Our aim is to relate the
dissipated energy to the performance of the clock. We therefore look at the amount of heat that is
dissipated into the cold reservoir for each tick, namely

Qc = (d− 1)Ec . (6.4)

This quantity is not equal to the total amount of heat supplied to engine, as this amounts to
Qh = (d − 1)Eh. A large share of the total energy used for the generation of one tick is carried
away by the photon. In theory one can think of a way such that the energy of the photon Eγ
could be recycled after its detection and provided to the hot reservoir again. Hence, leaving us
with the fundamental cost for one tick in form of the dissipated heat Qc, in (6.4). This leads to an
irreversible entropy production of at least βcQc per tick.

As mentioned above we will us the figures of merit, resolution and accuracy, to quantify the
performance of the clock. While the resolution is given by the average amount of ticks provided
by the clock per unit time, the accuracy is characterised by number of ticks the clock can provide
before a tick has an uncertainty equal to the average time interval between the ticks. In theory one
could also choose an operational definition for the accuracy, independent of background time [219].
It is however conjectured that in certain limits both of this definitions coincide [228].

So let us now define our figures of merit in a more rigorous manner. Given the distribution of
waiting times of the ticks of a clock, we get the following definitions for resolution and accuracy.

Definition 6.2.1 (Resolution). The resolution of a clock is defined as

νtick :=
1

ttick
, (6.5)

where ttick corresponds to the average waiting time between two consecutive ticks.

Thus the resolution is equal to the average amount of ticks that the clock provides per second.
We will now define the accuracy of a clock in the following way.

Definition 6.2.2 (Accuracy). The accuracy of a clock is defined as

N :=

(
ttick

∆ttick

)2

, (6.6)

where ∆ttick corresponds to the standard deviation of the distribution of ticks and ttick to the
average waiting time between two consecutive ones.
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Figure 6.5: Illustration of the fundamental trade-off between the dissipated heat and the achievable
accuracy and resolution. (a) Accuracy N as a function of dissipated heat per tick Qc, for various
values of the resolution νtick. At low energy, the accuracy increases linearly with the dissipated
energy, independently of the resolution. However, for higher energies, the accuracy saturates.
(b) Resolution νtick as a function of dissipated heat per tick Qc, for various values of the accuracy
N . The resolution first increases with dissipated energy, but then quickly saturates to a maximal
value. (c) Trade-off between accuracy and resolution when the energy dissipation rate is fixed. The
data are computed for fixed values of Tc = Ew, Th = 1000Ew and g = ~γ = ~Γ = 0.05Ew, while
the ladder dimension d and cold qubit energy Ec are varied independently. Note that d ≥ 10 for
all of the plotted points, thus Tc = Ew � Eγ = (d− 1)Ew and we can safely ignore the absorption
of a photon (i.e. the reverse of the decay process). Figure and caption from [11].

Regarding the definition of the accuracy it is important to note that in the model of the au-
tonomous clock, we have the assumed that after the emission of the photon, which happens spon-
taneously, the entire pointer system is reset to the initial state. This means in particular that we
have that the engine qubits are in equilibrium respective thermal reservoirs and in a product state
with the ground state of the ladder. As in the weak-coupling limit the back action on the engine’s
qubits through the interplay with the ladder is minimal, we can describe the ticks of the clock as
a renewal process. Hence, we get that the waiting time between any pair of consecutive ticks is
statistically independent from and also identically distributed (i.i.d) to the waiting time in between
any other pair of consecutive ticks.

This assumption is valid in the weak-coupling limit and the property of the independently dis-
tributed waiting times leads to the observation that the uncertainty in time of the nth tick is given
by
√
n∆ttick. Thus we get that the accuracy of the clock here is exactly the amount of ticks N

such the uncertainty in time of theN th tick, i.e. ∆ttick, is equal to the mean waiting time between
to consecutive ticks ttick.

One can do numerical calculations by using the equations of motion discussed in section 6.2.4.
The results are shown in figure 6.5 (a-b), where we can observe the behaviour of the accuracy N
and the resolution νtick in terms of dissipated heat Qc while fixing the other quantity. Figure 6.5
(c) shows the trade-off relation between the two figure of merit given a fixed amount of dissipated
energy. From this results we can conclude that building a good clock, that has both high accuracy
and resolution, implicates a large amount of dissipated energy per tick. We can see that in particu-
lar in figure 6.5 (c), where the curves are clearly ordered, yielding a better performance of the clock
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with increased dissipation of entropy. The amount of dissipated energy hence becomes a resource
that allows us to construct good clocks. Furthermore, we see that the trade-off relationship between
the two figures of merit is neither trivial nor linear. In the next section we will focus on the low
energy dissipation regime, where as we can observe in figure 6.5 (a), the accuracy becomes directly
proportional to the entropy production for a fixed resolution.

6.2.3 Accuracy in the weak-coupling limit

We will now analyse a regime of low energy dissipation and the behaviour of the accuracy therein. In
contrast to figure 6.5(a), where we had a fixed resolution and the dimension was allowed to vary, we
will now try compute the accuracy solely in terms of the dissipated power and the dimension of the
ladder. To be able to do so, we have to use approximations that are only valid in the case that there
is a vanishing interaction between the engine and the ladder. In section 6.2.5 it will be shown how
to derive this description of the clock through a perturbative approximation to the two-qubit engine.

Notably, we will show that the accuracy of the clock becomes independent of the details of its
dynamics, it being solely dependent on the population bias of the virtual qubit Zv and the ladder
dimension d. To do so we will approximate the evolution of the ladder system by a biased random
walk, determined by the interplay with the virtual qubit. This can be done as the virtual qubit
cannot create any coherences in the ladder system. This renders the transition probability of the
load going one ’step’ up or one ’step’ down independent of its position on the ladder.

We will denote the probability of the ladder’s population to move upwards p↑ and the probability
to move downwards p↓, such that

p↑
p↓

= e−βvEw (6.7)

is satisfied. Moreover, we assume that d is large enough for any reflections of the load on the
boundaries of the ladder are negligible and the clock ticks immediately when the top level is reached.
Doing do we can calculate the resolution by the simple one-letter formula,

νtick =
p↑ − p↓

d
. (6.8)

An intuitive interpretation of this formula would be to see the dimension d has the ’height’ of
the ladder and p↑ − p↓ as the ’speed’ of the load. Then equation 6.8 can be seen as computing the
number of times the load is able to ’climb’ up the ladder by unit time.

Given the foregoing assumptions we will show in section 6.2.5, that the accuracy can be com-
puted by,

N = d|Zv| . (6.9)

As said before, the accuracy is now independent of clocks’s dynamics and therefore also its
dynamical time scale which is determined by the rates p↑/↓. Instead we have that the accuracy is
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now dependent solely on the dimensionless quantities Zv and d.

We have seen in the previous chapter in the detailed description of the two-qubit engine, the
population bias of the virtual qubit depends on the dissipated heat. Bringing together the equations
(5.26) and (5.27), we can compute the accuracy as,

N = d tanh

(
(βc − βh)Qc − βhEγ

2d

)
. (6.10)
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Figure 6.6: Accuracy N versus dissipated energy Qc for various values of the dimension d of the
ladder, according to the approximation (6.10) with the same bath temperatures as in figure 6.5.
Figure and caption from [11].

The relationship of the population bias Zv and the heat flow between the two thermal baths
is however more general than what is considered here [229]. Section 6.2.7 includes a detailed dis-
cussion on this topic. It should be mentioned here, that we can observe that the accuracy solely
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depends on the amount of heat that is dissipated but not its rate.

Figure 6.6 illustrates the behaviour of the accuracy described in equation (6.10) for different
dimensions d. As one can see the accuracy starts out by increasing linearly and then saturates to
its maximal value N = d. We know that with growing Qc the virtual qubit’s bias also grows with
the limit |Zv| → 1 as Qc →∞. This means that the accuracy is limited not only by the dissipated
heat Qc, but also by the dimension of the ladder. Therefore we can conclude that for attaining a
certain accuracy, the clock needs to have at least a certain minimal dimension as well as it needs
to dissipate minimum amount of entropy per tick.

If we look at the case where we let the dimension grow infinitely, i.e. taking the limit d → ∞,
we see that

N → (βc − βh)Qc − βhEγ
2

. (6.11)

This means that the accuracy also in the case of an unbounded dimension is linearly dependent
on the dissipated energy, therefore imposing a fundamental limitation on the performance of the
clock. It can be seen even more clearly if we use Qh = Qc + Eγ , such that we get

N → βcQc − βhQh
2

=
∆Stick

2
, (6.12)

where ∆Stick denotes the increase of entropy in the clock. Observing equation (6.12) we can
conclude that the regularity of the ticking of the clock is connected to the strength of its the arrow
of time. Thus we have achieved a quantitative connection between the irreversibility of a clock and
its arrow of time.

6.2.4 Dynamics

Here we have a detailed look at how we model the dynamics of the pointer system that we used to
compute the distribution of ticks in the numerical simulations. Here the following formulation of
the master equation is used. To model the effect that each thermal bath has on the corresponding
qubit, we consider the superoperator

Lj = γjD[σj ] + γje
−βjEjD[σ†j ] , (6.13)

with the index j = h, c, indicating the hot and the cold system, respectively. Where we have
used the qubit lowering operators σj = |0〉j 〈1| and the dissipator in Lindblad form

D[L]ρ = LρL† − 1

2

{
L†L, ρ

}
. (6.14)

The dissipation rates γh,c govern the time scale of the dissipative processes that act on the engine.

To model the decay channel we couple the ladder system to the electromagnetic field.. Specif-
ically, we design the ladder such that only the highest energy transition |d− 1〉w → |0〉w interacts
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significantly with the reservoir of electromagnetic field modes at temperature Tc. We denote Γ the
spontaneous emission rate, that is associated with the emission of a photon with energy (d− 1)Ew.
Moreover, we assume that the photon is then measured by a photo-detector that has perfect ef-
ficiency and only a negligible time delay. The measurement of the emitted photons produces the
macroscopically observable ticks of the clock.

As mentioned we want to be able to ignore the transition |0〉w → |d− 1〉w, i.e. an incoming
photon exciting the ladder system. We therefore require that Tc � (d − 1)Ew, which means that
the background temperature Tc is low enough, to make the probability for the unwanted transition
to happen negligible.

In order to get the tick distribution of the clock, in theory one has to compute the density
operator of the pointer ρ(t) for all times t. As stated above we assume that the qubits in the engine
do not change significantly, remaining in the thermal states and therefore in equilibrium with their
respective heat baths. Thus the all the ticks are independent from each other and we are able to
compute resolution and accuracy from the distribution in time of a single tick, which makes the
computation feasible.

To start the description of the dynamics we denote ρ0(t), the state that is conditioned on no
spontaneous emission having occurred up to time t. Working in this ’no-tick’ subspace we assume
that the pointer start in the initial state

ρ0(0) =
e−βhEhσ

†
hσh

Zh
⊗ e−βcEcσ

†
cσc

Zc
⊗ |0〉w〈0| , (6.15)

where Zc,h are the respective partition functions. This models the situation where the clock
has just ticked, the ladder has decayed into the ground state and the engine’s qubit are in perfect
equilibrium with their respective heat baths. Subsequently the state of the conditional density
operator ρ0(t) evolves according to the master equation

dρ0

dt
= i
(
ρ0H

†
eff −Heffρ0

)
+ Lhρ0 + Lcρ0 , (6.16)

where Heff = H0 +Hint +Hse is the effective non-Hermitian Hamiltonian and the spontaneous
emission contribution therein is

Hse = − iΓ
2
|d− 1〉w〈d− 1| . (6.17)

Due to the non-hermiticity of the evolution the state ρ0(t) does not remain normalised. More-
over, we have that the trace of the conditional density operator P0(t) = Tr[ρ0(t)] gives us the
probability that the clock has not ticked yet. We can now compute the probability density W (t)
for the waiting times

W (t) = −dP0

dt
. (6.18)
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For the evaluation of the performance of our clock we only need the mean and the variance of
the waiting time between two consecutive ticks. These are given by,

ttick =

∫ ∞
0

dτ τW (τ) , (6.19)

(∆ttick)2 =

∫ ∞
0

dτ (τ − ttick)2W (τ) . (6.20)

6.2.5 Biased random walk approximation

In this section we show how we can one can derive the accuracy of the simple thermal clock by
assuming that the evolution of the pointer system can be modelled by biased random walk con-
trolled by the virtual qubit. This assumption leads to a diagonal density operator of the ladder
system, which can be described as a vector containing the populations of the different energy
levels. Furthermore we have to assume that the ladder is big enough, such that there are no reflec-
tion effects at the top, i.e. the population distribution does not ’feel’ the boundedness of the ladder.

The foregoing assumptions allow us to model the state of the ladder with time-dependent prob-
ability distribution q(n, t) on a grid of integers, that correspond to the different energy levels. Thus,
we have n ∈ Z, q(n, t) > 0, and

∑
n q(n, t) = 1. The evolution of this probability distribution is

fully determined by the probability to move upwards p↑ (jumping to next integer), together with
the probability to move downwards p↓ (jumping to the previous integer).

This leads to an equation of motion for the probability distribution,

dq(n, t)

dt
= p↑ q(n− 1, t) + p↓ q(n+ 1, t)

− (p↑ + p↓) q(n, t) . (6.21)

As we want to use this equation of motion for the computation of the accuracy and the resolution
of the clock, we need to know how fast the distribution moves up the ladder and how much it spreads
in doing so. For this purpose we consider the mean µ and the variance σ2 of the distribution q(n, t).

µ(t) :=
∑
n

n q(n, t), (6.22)

σ2(t) :=
∑
n

(n− µ(t))
2
q(n, t) (6.23)

The speed of the upwards movement is simply given by the time derivative of the mean,

dµ(t)

dt
=
∑
n

n
dq(n, t)

dt

= p↑ − p↓ . (6.24)
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Analogously we can compute the time derivative of the variance,

dσ2(t)

dt
=
∑
n

(
(n− µ(t))

2 dq(n, t)

dt
− 2 (n− µ(t))

dµ(t)

dt
q(n, t)

)
. (6.25)

If we now use the definitions of the two quantities, given in equations (6.22) and (6.23), we can
see that the whole expression simplifies to,

dσ2(t)

dt
= p↑ + p↓ . (6.26)

Equipped with the time derivatives of the mean and the variance, we can now relate them to
the figures of merit of the clock. Given that the average waiting time between two ticks of the clock
is equal to the time that the load needs to ’climb’ the d energy levels of the ladder from the bottom
to the top, we get that

ttick =
d

dµ(t)/dt
=

d

p↑ − p↓
, (6.27)

where d − 1 was replaced by d for the sake of simplicity as it was anyways assumed that the
dimension is large. The resolution of the clock νtick is now simply given by the inverse,

νtick =
p↑ − p↓

d
, (6.28)

recovering equation (6.8) as promised. Regarding the accuracy, we notice that within the average
time it takes the clock to tick the variance will have increased by

∆σ2 = ttick
dσ2(t)

dt
= d

(
p↑ + p↓
p↑ − p↓

)
. (6.29)

Given a good enough decay mechanism, the uncertainty of the load when it reaches the top of
the ladder is equal to the uncertainty of a single tick. This way we can calculate the uncertainty in
the time interval between consecutive ticks,

∆ttick =
σ (t = ttick)

dµ(t)/dt
=

√
d

p↑ − p↓

√
p↑ + p↓
p↑ − p↓

. (6.30)

Hence, when we have that the variance grows to be as large as the whole ladder, i.e. σ2 = d2,
the uncertainty is equal to the average time it takes for a single tick. We can therefore calculate
the number N , such that this is the case,

N = d

(
p↑ − p↓
p↑ + p↓

)
, (6.31)

which equal to the accuracy in equation (6.9), as it holds that p↑/p↓ = p1/p0.
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6.2.6 Derivation of the biased random walk model

In this section we derive the model of the biased random walk that we have used abundantly in
the previous sections. The essentially classical description of the pointer system stems from under-
standing the virtual qubit’s action through the bias it gives the ladder’s energy towards increasing.
We now want to put the stochastic treatment of the pointer system on a firmer footing. We will
work in a regime where the engine-ladder coupling g as well as the spontaneous emission rate Γ are
both small in comparison to the thermal dissipation rates γc,h.

For this purpose we use the Nakajima-Zwanzig projection operator technique [230, 231], in the
limit of γj � g,Γ. This allows us to compute the conditional reduced density operator of the ladder
ρw(t) = Trh,c[ρ0(t)] and the equation governing its evolution. We consider the projector,

Pρ0(t) = ρw(t)⊗ τh ⊗ τc , (6.32)

with τh,c denoting a local thermal state of the hot and the cold qubit, respectively. Choosing
the index j = h, c the local thermal states are given by

τj =
1

Zj
e−βjEjσ

†
jσj , (6.33)

with Zj = 1 + e−βjEj being the partition function for corresponding qubits. We can continue
by writing equation (6.16) as

dρ0

dt
= Lρ0 = (L0 +Hse +Hint) ρ0 , (6.34)

where we have decomposed the Liouvillian as L = L0 +Hse +Hint, as well as we have defined
the Hamiltonian superoperator

Hseρ = i
(
ρH†se −Hseρ

)
, (6.35)

andHint analogously. Now we transform the density operator to a dissipative interaction picture.
We can do so by defining

ρ̃0(t) = e−L0tρ0(t) , (6.36)

H̃int(t) = e−L0tHinte
L0t (6.37)

and

H̃se(t) = Hse . (6.38)

The standard perturbative argument [232] allows us to obtain

dP ρ̃0

dt
= HseP ρ̃0(t) +

∫ t

0

dt′ PH̃int(t)H̃int(t
′)P ρ̃0(t′), (6.39)

which is valid up to second order in the small quantities g and Γ. To continue we can apply the
Born-Markov approximation to the t′ integral in above expression [232] . This allows us to extend
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the lower integration limit to negative infinity and transform ρ̃0(t′)→ ρ̃0(t). We can justify this by
the assumption that γj � g,Γ, guaranteeing that the integrand vanishes quickly in comparison to
the time scale of notable changes of P ρ̃0(t).

This simplifies equation (6.39) as we can first expand the commutators, then trace out the
engine’s qubits and finally transform back to the Schrödinger picture. The result is a master
equation in which the evolution of the populations is decoupled from that of the coherences as long
as it is expressed in the eigenbasis of Bw. As we have that the initial state, given in equation (6.15),
has no coherences, we can focus solely on the contributions for the populations

dρw
dt

= p↓D[Bw]ρw + p↑D[B†w]ρw −
Γ

2
(|d− 1〉w 〈d− 1|w ρw + ρw |d− 1〉w 〈d− 1|w) . (6.40)

This allows us to define the probability vector ~q whose elements are given by

qn(t) = Tr (ρw(t) |n〉w 〈n|w) , (6.41)

which gives

d~q

dt
= A~q , (6.42)

where

A =


−p↑ p↓
p↑ −(p↑ + p↓)

. . .

−(p↑ + p↓) p↓
p↑ −(p↓ + Γ)

 . (6.43)

Except the additional term proportional to Γ, corresponding to the spontaneous decay from the
top level, this expression is equal to equation (6.21), where ~qn(t) = q(n, t). Furthermore, for the
forward and backward rates we get Laplace-transformed correlation functions of the engine’s qubits

p↓ = 2g2

∫ ∞
0

dt eiEwt
〈
σh(t)σ†h(0)σ†c(t)σc(0)

〉
, (6.44)

p↑ = 2g2

∫ ∞
0

dt e−iEwt
〈
σ†h(t)σh(0)σc(t)σ

†
c(0)

〉
, (6.45)

with the angle brackets denoting an average with respect to ρh ⊗ ρc. The time dependence of

the operators is given through σh,c(t) = eL
†
0tσh,c, where the adjoint Liouvillian L†0 is defined by

Tr(QL0(P )) = Tr(L†0(Q)P ), for arbitrary operators P and Q.
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Explicitly, this leads to

σj(t) = e−iEjt−
γjZjt

2 σj (6.46)

for j = h, c, corresponding to the hot and the cold qubit, respectively. This further implies

p↓ =
4g2e−βcEc

ZhZc(γhZh + γcZc)
, (6.47)

p↑ =
4g2e−βhEh

ZhZc(γhZh + γcZc)
, (6.48)

from which we can verify that

p↑
p↓

= e−(βhEh−βcEc) = e−βvEw , (6.49)

with the self-consistency condition of the Born-Markov approximation requiring that p↓/↑ � γj .

6.2.7 Limits of thermally run clocks

Above we have brought forward the argument that the accuracy of an autonomous clock is bounded
by the entropy it dissipates per tick. We have done so by using the relation between the bias of the
ladder to move upwards and the population bias of the virtual qubit. For the two-qubit engine this
satisfies [223],

βwEw = βhEh − βcEc . (6.50)

If we now multiply with the ’height’ of the ladder, d− 1, we get

βwEγ = βh (Qc + Eγ)− βcQc , (6.51)

since Ec = Eh−Ew. There is an intuitive way to understand this expression. Each time a virtual
qubit is prepared by the thermal machine in an appropriate state to exchange Ew with the lad-
der system, it necessarily has to absorb Eh from the hot bath and also dissipate Ec to the cold bath.

There exists a large class of autonomous quantum thermal machines [229], for which it has been
shown that this statement holds true as well, in the weak-coupling regime at least. While one
can find more intricate designs and other tweaks for the engine, making it arbitrarily complex, the
result will still be constrained by equation (6.50) [227]. This leads us to conclude that the trade-off
between accuracy and power consumption that we have derived above for autonomous clocks, is
not limited to the explicit model considered here.

This opens up an interesting direction for future research, namely, investigating clocks that are
not in the weak-coupling regime. This is specially intriguing it should be possible to outperform the
stochastic models, hence essentially classical, that we have presented above by allowing or willingly
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incorporating coherences [228]. Even here where we have considered the simplest case, i.e. the
two-qubit engine, there is some coherence present in the subspace in which the interaction between
the engine and the ladder takes place. This coherence is maintained during the upwards movement
of the ladder and prevents the energy distribution from spreading too much, as the authors of
[223] show. Still this is not not enough for the presented model to take full advantage of quantum
properties. This shows the great potential of achieving even more accurate clocks by the adoption
of stronger couplings and more coherence.

6.3 Fundamental limits

We have seen that in the simple thermal clock model that was discussed extensively the perfor-
mance of the clock, i.e. its ability to accurately and precisely measure time, comes with an intrinsic
cost, the generation of entropy through heat dissipation. Now the question is whether this intrinsic
work cost for measuring time is specific aspect of the explicit model that we have presented above
or whether this universal feature of all time measurement devices. Here we will argue in favour of
it being an intrinsic property of any autonomous clock.

As discussed in section 6.2, we have that due to the bipartite nature of autonomous time mea-
surement devices the ticking of the device requires a transition in the pointer system that leads to a
corresponding change in the register [198]. Ideally this is a spontaneous and effectively irreversible
process, the results of which are accessible to an external observer. The bias of a transition to occur
with a greater likelihood than its time-reverse induces a reduction of the free energy in the pointer
system. Thus, for clock to run continuously, the pointer system needs to have access to resources
that allow it to renew its free energy. Such can be achieved by providing out of equilibrium re-
sources. The question now is whether a time measurement device can exist, that perfectly turns
free energy into ticks, that means without increasing entropy.

Let us first look at the question with focus on clocks which are powered by thermal baths,
reiterating some of the argument that were given in the previous section. There exists a wide range
of possibilities constructing such clocks, that go beyond the explicit model that we have considered
above [227]. Still, even this more general designs will work according to the same principle, using
the pointer system to drive a population until an unstable level induces a tick. In order for the
time-reverse not to happen equally likely, the energy of the thermal background must be small
compared to that of the unstable level. This could as well work with complex ladder structures or
multiple unstable levels and machines comprised of much more then two qubits.

Notwithstanding, any of these possible generalisations will still be subject to the laws of thermo-
dynamics. This means that specifically the maximum efficiency of converting free energy into ticks
will be limited by the Carnot efficiency ηC = 1− Tc/Th. Note that in the limit of going to Carnot
efficiency, that is the limit where the power consumption vanishes, machines become reversible. As
a finite power consumption is necessary for a finite resolution [198], this conversely implies that a
clock that works with Carnot efficiency will tick infinitely slowly. Thus, even in unfeasible regimes,
such as Tc → 0 or Th → ∞, demanding a clock with a finite resolution leads to a minimum in
dissipated heat, which in turn implies a minimum production of entropy.
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One can also think of more general non-thermal resources that could be used to power a clock.
Even in such scenarios the condition of functioning autonomously, prohibits us using resources
that themselves need well-timed operations for their production. This in principle should enable
us to build clocks that have a better performance than thermally driven ones. Nevertheless, an
autonomous clock that has a finite resolution without dissipating entropy, would embody an au-
tonomous machine operates with unit efficiency at finite power. We can hence conclude that in the
case that running a autonomous quantum clock is not intrinsically connected to the generation of
entropy, the implications would go far beyond the task of measuring time.

At last, it shall be remarked that we have only considered the minimal entropy dissipation pos-
sible by running a clock, ignoring all other sources of heat dissipation. Examples of such are for
example the reset of the register, which would come with its own associated energy cost [177, 233],
or the inability to recycle the photon’s energy. Although there is probably a square root missing
[228], let us imagine the bound derived in equation (6.12) to be universal. It, much alike Landauer’s
principle, vastly underestimates the real costs of running a clock. For example considering a typical
atomic clock [234], that has a resolution of around 1010 Hz and an accuracy of about 1016, then the
bound would imply a minimal power consumption of around 50µW. This still surpasses the power
consumption of the most efficient atomic clocks by magnitudes [235].

To sum up, we have that in the model of a autonomous clock presented above each unit of
dissipated heat can be either turned into an increase of the resolution or the accuracy. The model
has allowed us to find a connection between the second law of thermodynamics and the arrow of
time [236, 237]. Moreover, we found that independent of the entropy production, the dimension of
the pointer system (specifically the ladder) constrains the performance of the clock. This has also
shown to hold in general by the authors of [228]. Our considerations were mainly focused on the
explicit example of an autonomous clock, given by the minimal thermal clock, while this already
allowed us to gain insights on the limitations of our ability to measure time, it would be interesting
to see whether one can extend this results by for example considering multiple conserved quantities
[238, 239, 240, 241]. Looking into such question could clarify how the choice of resources, another
example being passive states [242], impacts the performance of clocks.

The presented results could have great impact also in tasks like controlling other quantum sys-
tems [218, 243, 244], helping in the clarification of the underlying costs. It could also be possible
that the model of autonomous clocks becomes an important building block on the road of construct-
ing quantum information processing devices on a microscopical scale. As self-contained modules
they could be used to time the interaction for the implementation of time-dependent Hamiltonians.

Lastly, the question remains whether one can increase the performance of autonomous clocks
by exploiting genuine quantum effects, as for example coherence or entanglement [245, 246]. While
letting classical clocks work in parallel can only increase their performance linearly, the use of quan-
tum phenomena as resources could change that behaviour completely.



Chapter 7

Conclusion

The first chapter looked at definitions of a doctoral thesis in the given context and outlined the
content of this one here. The second chapter started with insights into the history of the fields of
quantum theory, information theory and quantum information theory. It then continued introduc-
ing all the prerequisites for what was to follow. After the introduction of the necessary measure of
information, a no-go result on the generalisation of quantum conditional mutual information to the
non-asymptotic framework was presented.

The third chapter describes the importance of bases for the modelling of systems in quantum
information theory. The convenient Bloch decomposition is presented there as well as a discussion
of the property of mutual unbiasedness. The chapter then goes on with an analysis of possible bases
that can be used for high-dimensional systems. The fourth chapter deals with entanglement, as
well as its detection and quantification. For the detection of entanglement a theorem is presented
that makes use of sets of anti-commuting basis elements. For the quantification a framework is
introduced, that allows to do so with the use of two measurement settings only.

The fifth chapter is about thermodynamics and information. It introduces quantum thermo-
dynamics and the quantum machines one can construct therein. In the end a little discourse on
a algorithmic approach for thermodynamics and emergence is given. The sixth chapter is on time
and discuses how to measure it. For this purpose autonomous quantum clocks are introduced and
the performance of such is analysed.

Last, regarding the question posed in the title: What is the role of information in physics? This
ample question remains without a definite answer. Although we have been going through a lot of
notions and different contexts in which information plays a vital role, it not yet clear what informa-
tion exactly is. From knowledge what a measurement basis is to the decision which measurement
basis to use to the correlations that the system under observation might show, all is information.
Despite the very rigorous definitions we have in some contexts for information, we cannot pin it
down to one in general. We have discussed quantities, such as the Kolmogorov complexity, that
seem to be the optimal measure for information, taking out the counterfactuals that we got so used
to. Still it remains uncomputable and this may just be the point. Since Gödel we know that math-
ematics is not the perfect natural language it was believed to be and still it is the most universal
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we have. It could be, that this finiteness, limitedness, all languages that we have discovered so far
bring along is inevitable [247]. Information transcends physics by far, appearing in places where
physics cannot go [248] and only the belief in an absolutely predetermined world can render them
equals [211]. In the end, it may be up each and everyone one of us to decide where we are going [249].

Science is dead, long live Science!
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[28] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme I. Monatshefte für Mathematik und Physik, Volume 38, Issue 1, pp 173?198 (1931)

[29] R. Bertlmann, A. Zeilinger (Eds.). Quantum (Un)speakables - From Bell to Quantum Infor-
mation. R. Bertlmann, A. Zeilinger. Springer, (2002)

[30] A. Einstein, B. Podolsky, N. Rosen. Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?. Phys. Rev. 47, 777, (1935)

[31] S. Wiesner. Conjugate coding. ACM SIGACT, Volume 15 Issue 1, pages 78-88, (1983)

[32] Z. Gavorova. Private communication, (2015)

[33] D. Kaiser. American Physics and the Cold War Bubble. University of Chicago Press, in prepa-
ration



BIBLIOGRAPHY 101

[34] N. Herbert. FLASH - A superluminal communicator based upon a new kind of quantum mea-
surement. Foundations of Physics, 12 (12): 1171-1179, (1982)

[35] D. Kaiser. How the Hippies Saved Physics. Norton, (2011)

[36] W. Wootters, W. Zurek. A single quantum cannot be cloned. Nature, volume 299, pages 802?803
(1982)

[37] D. Dieks. Communication by EPR devices. Physics Letters A 92, 271-272, (1982)

[38] P. Benioff. Quantum mechanical hamiltonian models of turing machines Journal of Statistical
Physics, Band 29, 515?546, (1982)

[39] R. Feynmann. Simulating Physics with Computers. International Journal of Theoretical
Physics, vol 21, Nos. 6/7, (1982)

[40] Y. Manin. Vychislimoe i nevychislimoe (Computable and Noncomputable). (in Russian). Sov.
Radio. pp. 13-15, (1980)

[41] D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quantum Com-
puter. Proc. R. Soc., vol. 400 no. 1818, 97?117, (1985)

[42] A. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67 (6): 661?663,
(1991)

[43] C. Bennett, G. Brassard. Quantum cryptography: Public key distribution and coin tossing.
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,
volume 175, page 8, (1984)

[44] D. Simon. On the power of quantum computation. Foundations of Computer Science, 35th
Annual Symposium, 116?123, (1995)

[45] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer. SIAM Journal on Computing, 26/1997, 1484?1509, (1997)

[46] L. Grover. A fast quantum mechanical algorithm for database search. Proceedings, 28th Annual
ACM Symposium on the Theory of Computing, p. 212, (1996)

[47] A. Steane. Multiple-Particle Interference and Quantum Error Correction. Proc. Roy. Soc. Lond.
A. 452 (1954): 2551?2577, (1996).

[48] P. Shor. Scheme for reducing decoherence in quantum computer memory. AT&T Bell Labora-
tories, (1995)

[49] T. Kadowaki, H. Nishimori.Quantum annealing in the transverse Ising model. Phys. Rev. E,
vol 58, number 5, (1998)

[50] B. Schumacher. Quantum coding. Phys. Rev. A 51, 2738, (1995)

[51] J. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74,
4091, (1995)



102 BIBLIOGRAPHY

[52] C. Monroe, D. Meekhof, B. King, W. Itano, D. Wineland. Demonstration of a Fundamental
Quantum Logic Gate. Physical Review Letters. 75 (25): 4714?4717, (1995)

[53] I. Chuang, N. Gershenfeld, M. Kubinec. Experimental Implementation of Fast Quantum Search-
ing. Physical Review Letters. 80 (15): 3408?3411, (1998)

[54] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger. Experimental
Quantum Teleportation. Nature 390, 6660, 575-579, (1997)

[55] W. Greiner, J. Reinhardt. Field Quantization. Springer, (1996)

[56] Design by the author, created by Flavia Mudesto, (2018)

[57] C. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal. 27
(3): 379-423 & (4): 623-666, (1948)

[58] I. Devetak, J. Yard. The operational meaning of quantum conditional information. Phys. Rev.
Lett. 100, 230501, (2008)

[59] M. Christandl, A. Winter.Squashed entanglement: An additive entanglement measure. J. Math.
Phys. Vol 45, No 3, pp. 829-840, (2004)

[60] P. Hayden, R. Jozsa, D. Petz, A. Winter. Structure of states which satisfy strong subadditivity of
quantum entropy with equality. Communications in Mathematical Physics, 246(2):359374, (2004)

[61] N. Datta. Min- and Max-Relative Entropies and a New Entanglement Monotone. IEEE Trans.
Inf. Th., vol. 55, no. 6, (2009)

[62] R. Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zurich, (2005)

[63] M. Tomamichel. A Framework for Non-Asymptotic Quantum information Theory. PhD thesis,
ETH Zurich, (2012)

[64] D. Petz. Quasi-Entropies for finite quantum Systems. Rep. Math. Phys., 23:57?65, (1984)

[65] M. Tomamichel, R. Colbeck, R. Renner. Duality Between Smooth Min- and Max-
Entropies.IEEE Trans. Inf. Th., vol. 56, no. 9, (2010)

[66] R. Koenig, R. Renner, C. Schaffner. The operational meaning of min- and max-entropy. IEEE
Trans. Inf. Th., vol. 55, no. 9, (2009)
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[85] C. Klöckl and M. Huber. Characterizing multipartite entanglement without shared reference
frames. Phys. Rev. A 91, 042339, (2015)

[86] O. Gamel. Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 93,
062320, (2016)

[87] S. Goyal, B. Simon, R. Singh, S. Simon. Geometry of the generalized Bloch sphere for qutrits.
J. Phys. A: Math. Theor. 49 165203, (2016)

[88] P. Kurzynski. Multi-Bloch vector representation of the qutrit. Quantum Inf. Comp. 11, 361,
(2011)



104 BIBLIOGRAPHY

[89] P. Kurzynski, A. Kolodziejski, W. Laskowski, M. Markiewiczi. Three-dimensional visualisation
of a qutrit. Phys. Rev. A 93, 062126, (2016)

[90] S. Massar and P. Spindel. Uncertainty Relation for the Discrete Fourier Transform. Phys. Rev.
Lett. 100, 190401, (2008)

[91] R. Namiki and Y. Tokunaga. Discrete fourier-based correlations for entanglement detection.
Phys. Rev. Lett. 108, 230503, (2012)

[92] A. Asadian, C. Budroni, F. E. S. Steinhoff, P. Rabl, and O. Gühne. Contextuality in Phase
Space. Phys. Rev. Lett. 114, 250403, (2015)

[93] N. Cotfas and D. Dragoman. Properties of finite Gaussians and the discrete-continuous tran-
sition. Journal of Physics A: Mathematical and Theoretical 45, 425305, (2012)

[94] A. Vourdas. Quantum systems with finite Hilbert space. Reports on Progress in Physics 67,
267, (2004)

[95] C. Spengler, M. Huber, and B. C. Hiesmayr. A composite parameterization of unitary groups,
density matrices and subspaces. Journal of Physics A: Mathematical and Theoretical 43, 385306,
(2010)

[96] W. Wootters, B. Fields. Optimal state-determination by mutually unbiased measurements. Ann.
Phys. 191, 363, (1989)

[97] N. Cerf, M. Bourennane, A. Karlsson, N. Gisin. .Security of Quantum Key Distribution Using
d-Level Systems. Phys. Rev. Lett. 88, 127902, (2002)

[98] E. Aguilar, J. Borkala, P. Mironowicz, M. Pawlowski. Connections Between Mutually Unbiased
Bases and Quantum Random Access Codes. Phys. Rev. Lett. 121, 050501, (2018)

[99] T. Durt, B.-G. Englert, I. Bengtsson, K. Zyczkowski. On mutually unbiased bases. Int. J.
Quant. Inf. 8, 535, (2010)

[100] P. Vernaz-Gris, A. Ketterer, A. Keller, S. P. Walborn, T. Coudreau, P. Milman. Continuous
discretization of infinite-dimensional Hilbert spaces. Phys. Rev. A 89, 052311, (2014)

[101] M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, A. Zeilinger. Entangled
singularity patterns of photons in Ince-Gauss modes. Phys. Rev. A 87, 012326, (2013)

[102] E. Schrödinger. Discussion of probability relations between separated systems. Mathematical
Proceedings of the Cambridge Philosophical Society. 31 (4): 555-563, (1935)

[103] G. Hermann. Die naturphilosophischen Grundlagen der Quantenmechanik. Naturwis-
senschaften, Volume 23, Number 42, 718-721, (1935)

[104] N. Bohr. Can Quantum-Mechanical Description of Physical Reality be Considered Complete?
Physical Review, 38: 696-702, (1935)

[105] V. Baumann, A. Hansen, S. Wolf. The measurement problem is the measurement problem is
the measurement problem. arXiv:1611.01111



BIBLIOGRAPHY 105

[106] V. Baumann, S. Wolf. On Formalisms and Interpretations. Quantum 2, 99, (2018)

[107] C. Bennett, S. Wiesner, Communication via one- and two-particle operators on Einstein-
Podolsky-Rosen states. Phys. Rev. Lett. 69 (20): 288, (1992)

[108] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal. Entanglement-assisted capacity of
a quantum channel and the reverse Shannon theorem. IEEE Transactions on Information Theory,
Vol. 48 (10), 2637 - 2655, (2002)

[109] R. Fickler, R. Lapkiewicz, W. Plick, M. Krenn, C. Schäff, S. Ramelow, A. Zeilinger. Quantum
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