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Abstract

In the interactive communication model, two distant partiesPX andPY respectively possess private

but correlated inputsx andy, andPY wants to learnx from PX while minimizing the communication

for the worst possible input pair(x; y). Our main contribution is the analysis of nonzero-error models in

this correlated data setting. In the private coin randomized model, both players are allowed to toss coins

andPY must learnx with high probability for every input pair. The public coin randomized model is

similar to the first model, but instead of private coins, both players have access to a common source of

randomness. The private coin randomized amortized model is also similar to the first model, with the

addition that the players are also allowed to solve several independent instances of the same problem

simultaneously instead of sequentially. The last model, called the distributional model, is deterministic,

but PY is allowed to answer incorrectly for a small fraction of the inputs weighted by their probability

distribution.

We show that the public coin randomized, private coin randomized amortized and distributional

models are equivalent and can reduce the communication compared to the original worst-case deter-

ministic model. Moreover, when the players are not allowed to interact, the difference between the

best deterministic and public coin randomized protocols can be arbitrarily large. We prove that one

round of communication is almost optimal for the private coin randomized model. We also show that

the deterministic model and all the nonzero-error models are equivalent for a large class of symmetric
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problems arising from several practical applications, although nonzero-error and randomization allows

efficient one-way protocols.

Index Terms

Interactive communication, nonzero-error, randomization, worst-case protocols, communication com-

plexity

I. I NTRODUCTION

Interactive communication was introduced by Orlitsky [1] and lies at the intersection of

information theory and communication complexity. It studies the amount of communication

needed for one party to convey information to a second party who has correlated information. Two

players, aninformantPX and arecipientPY , respectively possess private but correlated inputsx
andy. PY wants to learn his interlocutor’s input without error while minimizing the number of

bits that need to be transmitted in the worst case. To do so, they alternately exchange data on a

noise-free channel following a deterministic protocol they have agreed upon initially. Unlike the

original communication complexity model [2] (see [3] for an exhaustive survey), the function to

be computed is trivial (f(x; y) = x), but the problem is to exploit the correlation between the

parties’ knowledge for reducing the required amount of communication. The following example

illustrates the model.

Example 1:The League Problem [1]

A sport league has2n teams, and the name of each team is a binary string ofn bits.PY knows

the two teams playing in the championship match, but a blackout during the game restricts him

to learn who wins.PX , on the other hand, hears the name of the champion team on the radio

but has no idea who is the runner-up.PY wants to learn the identity of the champion team fromPX with certainty while minimizing the communication.

If only one round of communication fromPX to PY is allowed, thenPX has to transmit then bits of the winning team. If less thann bits are transmitted, there are two teams for whichPX sends the same message; if those two teams happen to play in the championship match, thePY is not able to learn the winner with certainty. However, a substantial gain can be achieved

when interaction is allowed.PY sends the position of one of the bits where the names of the

two finalists differ, which requiresdlog ne bits. It is then sufficient forPX to send the bit of the
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winning team at the required position. This protocol requiresdlog ne + 1 communication bits,

an exponential gain compared to the one-way protocol. Moreover, Orlitsky has shown that even

if more than two rounds of communication are allowed, no protocol can solve the problem by

exchanging a smaller number of bits in the worst case.

Although the example above might seem artificial, interactive communication includes a large

class of symmetric problems [4] inherent to several practical applications including synchroniza-

tion of mobile data [5], reconciliation of sequences of symbols such as nucleotides sequences

in DNA molecules [6], remote data storage [7] and quantum key distribution [8].

In this paper, we study worst-case nonzero-error interactive communication and compare the

results with the original worst-case deterministic model. We allowPY to learnPX ’s input with

a probability of error at most� and study how it can improve the communication, either by

reducing the number of bits that need to be exchanged or by reducing the number of rounds of

communication. Four nonzero-error models are presented. The first model, worst-case private coin

randomized interactive communication, allowsPY to learnx with probability at least1�� for all

the possible input pairs(x; y). The players can also use randomized protocols: each player has a

private, independent source of randomness whose output can be used to decide which bits should

be transmitted. The second model, worst-case public coin randomized interactive communication,

also allowsPY to learnPX ’s input with probability at least1� � for all the possible input pairs.

It also uses randomized protocols, but instead of private coins, both players can use a public

(common) random generator. The third model, worst-case private coin randomized amortized

interactive communication, allows the players to solve several independent instances of the same

problem simultaneously instead of sequentially. The players are again permitted to use private

coins, andPY can fail to learnx with probability at most� for every input pair. The fourth model,

worst-case distributional interactive communication, permits only deterministic protocols, butPY
can learnx incorrectly for a fraction at most� of all the inputs weighted by their probability

distribution.

We prove that the worst-case public coin randomized, private coin randomized amortized

and distributional models are equivalent and that optimal protocols for the three models do not

require interaction between the players. The models can be arbitrarily better than the worst-case

deterministic model when a single round of communication fromPX to PY is allowed.
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We show that for Cartesian-product pairs, the deterministic and all the nonzero-error models

are equivalent and inefficient. The models are equivalent and efficient for symmetric problems

including all the applications previously mentioned, although nonzero error and randomization

allows efficient protocols using only one round of communication.

The most challenging model is the worst-case private coin randomized model. We show that

the best one-round protocols for this model are at most three times more expensive than the best

randomized or deterministic protocols using an unbounded number of rounds of communication.

This is a striking difference from the deterministic model, for which Orlitsky [1] has shown

that the best one-round protocols can require to the transmission of exponentially more bits

than the optimal protocols. It is also different from randomized communication complexity of

boolean functions, which exhibits the same phenomenon [9]. We also prove that the worst-

case randomized and deterministic models are equivalent for several classes of problems and

conjecture that both models are equivalent for all the interactive communication problems.

The outline of the paper is as follows. In Section II, we describe the complexity models and

present the existing work. The private coin and public coin randomized models are treated in

Sections III and IV, respectively. Randomized amortized interactive communication is studied in

Section V, and the distributional model in Section VI. The results for balanced and symmetric

problems are presented in Section VII. Finally, in Section VIII, we discuss open problems related

to the private coin randomized model.

II. COMPLEXITY MODELS AND KNOWN RESULTS

A. Preliminaries

The framework for studying interactive communication was introduced by Orlitsky in his

seminal paper [1]. LetX andY be finite sets, and letS � X � Y , the support setof (X; Y ),
define an interactive communication problem. Two players,PX and PY , possess respectively

inputsx 2 X and y 2 Y such that(x; y) 2 S, and they wantPY to learnx while minimizing

the communication between them (it is not necessary forPX to learny). It is assumed that the

communication between the players is binary.

A k-round protocolis a protocol such that for every input, there are at mostk�1 alternations

between the data sent byPX and the data sent byPY . Due to the asymmetric nature of the

interactive communication model, it is assumed that the last round of communication is always
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from PX to PY . A 1-round protocol is also calledone-way, and a protocol requiring more that

one round of communication is calledtwo-way.

A hypergraph is an ordered pairG = (V;E), whereV is the set of vertices andE the set of

hyperedges. Each hyperedge is a subset ofV . Two distinct verticesv1 and v2 of a hypergraph

are adjacent if there is an edgee 2 E such thatv1 2 e and v2 2 e. A proper coloringof a

hypergraph is a partition ofV in colors such that no adjacent vertices have the same color. The

chromatic number� of a hypergraph is the smallest number of colors for which there exists

a proper coloring ofG. A convenient way to analyze an interactive communication problemS � X � Y is to use itscharacteristic hypergraphGS. The vertices ofGS are the elements ofX, and for everyy 2 Y there is a hyperedgeE(y) , fx j (x; y) 2 Sg. The number of different

hyperedges ofGS is denoted�. It should be noted that all the asymptotic bounds presented in

this paper only make sense for the support sets for which� is a function of the size of the

inputs.

The ambiguity setof an inputx 2 X, defined asa(x) , fy 2 Y j (x; y) 2 Sg, is the set

of all possible inputs forPY given thatPX ’s input is x, and theambiguityof x is ja(x)j. The

maximum ambiguityof PX , caX , maxx2X fja(x)jg, is the maximum number of possible elements ofY for any element inX. Note thata(y), ja(y)j andcaY are defined similarly with the assumption

thatcaY > 1, since a support setS with caY = 1 is trivial and does not require communication.

Example 2:As an illustration for the league problem presented in Example 1,

the support setL is defined asL = f(t1; ft1; t2g) j t1 6= t2g, wheret1; t2 2 f0; 1gn are teams.

The vertices ofGL are the teams of the league and its hyperedges are the possible match-ups

for the championship game. It follows that the maximum ambiguity ofPX is the the number of

possible runner-ups given the champion team (caX = 2n � 1), and the maximum ambiguity ofPY is the number of possible champion teams given the two finalists (caY = 2).

A support setS � X � Y is a Cartesian-productsupport set if there existsX 0 � X andY 0 � Y such thatS = X 0 � Y 0. A support setS is balancedif caX = caY . A symmetricsupport

set is a support such that(x; y) 2 S if and only if (y; x) 2 S (it is clear that symmetric support

sets are also balanced). Symmetric support sets arise naturally in all the problems for which the

parties’ inputs are bounded by a certain ”distance”, including all the applications mentioned in

Section I.
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B. Worst-Case Deterministic Model

The worst-case deterministic model was introduced by Orlitsky [1]. It has the following

characteristics:

1) Both players send information according to a deterministic protocol. Each player sends

messages based on his input and the messages previously received.

2) When a player sends a message, his interlocutor knows when it ends, and both players

know that the transmission ends when the protocol halts. Thecodewordof (x; y) 2 S is

the concatenation of the messages sent by the players on the input pair(x; y). It can be

shown that the set of possible codewords is prefix-free.

3) PY has to learnx without error for every pair(x; y) 2 S.

The worst-case deterministic complexityof a support setS, written Ĉ1(S), is the minimum

number of bits the players have to exchange in order forPY to learnx without error for every

pair (x; y) 2 S. We write Ĉk(S) when the number of rounds of communication is bounded byk; obviouslyĈk(S) decreases withk andĈ1(S) = limk!1 Ĉk(S). We writeĈ�(S) for the number

of bits that need to be transmitted ifPX knowsy in advance.

The following results have been shown by Orlitsky [1]. A deterministic protocol requires at

least dlogcaYe bits of communication, otherwise ifja(y)j = aY , then there are different input

pairs(x1; y) and(x2; y) for which the communication between the players is the same. Clearly,

the bound is tight ifPX knowsy in advance and a single round of communication is sufficient.

Result 3: Ĉ1(S) � dlogcaYe = Ĉ�(S):
The one-way deterministic complexity is the logarithm of the chromatic number of the un-

derlying hypergraph of the problem, and one-way protocols require at most exponentially more

bits than protocols allowing interaction.

Result 4: Ĉ1(S) � dlog Ĉ1(S)e+ 1 = dlogdlog�ee+ 1:
A remarkable result from Orlitsky is that two rounds of communication are almost optimal

for every problem, i.e., Ĉ2(S) � 4Ĉ1(S) + 3:
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This is quite different from the original communication complexity model, where for everyk > 0, there is a function whose bestk-round protocol requires exponentially more bits than its

best(k + 1)-round protocol [10].

Orlitsky [11] has shown in a subsequent paper that two rounds of communication are not

optimal for worst-case deterministic interactive communication, and Zhang and Xia [12] have

proved that three rounds are not optimal either. Ahlswede, Cai and Zhang [13] have conjectured

that four rounds are optimal, but the problem remains open, i.e., whether there is ak such that

Ĉk(S) � Ĉ1(S) + o(Ĉ1(S)):
Naor, Orlitsky and Shor [14] have proved an upper bound on the 4-round deterministic

complexity.

Result 5:

Ĉ4(S) � log log � + logcaY + 3 log logcaY + 7
� log log�+ 2 logcaY + 3 log logcaY + 7
� 3Ĉ1(S) + o(Ĉ1(S)):

Balanced and symmetric support sets have been studied by Orlitsky [4], who has proved that

the best one-way protocols require at most two times the amount of communication required by

optimal protocols, i.e, Ĉ1(S) � 2Ĉ1(S) + 1;
and that three rounds of communication are optimal.

Result 6: Let S be a balanced support set. Then,

Ĉ1(S) � Ĉ3(S) � logcaY + 3 log logcaY + 11 � Ĉ1(S) + o(Ĉ1(S)):
C. Worst-Case Private Coin Randomized Model

In our first nonzero-error model,PY is allowed to learnx with probability of error�. The

players are also allowed to toss coins;PX andPY possess respectively independent finite random

stringsrX and rY of arbitrary length. The communication bits become random variables: bits

sent byPX depend onx andrX , and bits sent byPY depend ony andrY . It is therefore possible

that for a fixed input pair(x; y), a protocol outputs different results for different values ofrX
andrY .
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Let S be a support set and letP be a randomized protocol.P computesS with error � if,

for every pair(x; y) 2 S, the probability thatPY answersx on input (x; y) is at least1 � �.
The worst-case communicationof a protocolP on input (x; y) is the maximum number of bits

communicated for any choice of the random stringsrX et rY . The worst-case costof P is the

maximum, for all the inputs(x; y), of the worst-case communication ofP on (x; y).
The �-error worst-case randomized complexityof S, written R̂�1(S), is the minimum worst-

case cost of a randomized protocol computingS with error �, for 0 < � < 12 . In other words,R̂�1(S) is the number of bits transmitted in the worst-case by the best protocol which, for every

pair (x; y) 2 S, allowsPY to learnx with probability at least1� �. We write R̂�k(S) when the

number of rounds is bounded byk. Also, for the rest of this paper unless specified otherwise,� is constant andc(�) is a function of�.
In his original paper, Orlitsky [1] has briefly studied a weaker randomized model considering

the average communication over the choices ofrX and rY for the worst input pair. Using this

model, he has shown that the one-way randomized complexity is at more four times the worst-

case deterministic complexity, i.e.,

R�1(S) � 4Ĉ1(S) + 2 log 1� :
D. Worst-Case Public Coin Randomized Model

In the randomized model previously defined, each player has his own random generator.PX
cannot seerY and vice-versa. In the public coin randomized model, both players can access a

common ”public” random coin. Formally, both players have a common random stringr following

a probability distribution�. Communication bits sent byPX depend onx andr, and those sent

by PY depend ony andr. A public coin randomized protocol can also be viewed as a probability

distribution over a family of worst-case deterministic protocols.

The�-error worst-case public coin randomized complexityof a support setS, writtenR̂�;pub1 (S),
is the number of bits transmitted in the worst case by the best public coin protocol which allowsPY to learnx with an error probability bounded by� for every pair(x; y) 2 S. We writeR̂�;pubk (S)
when the number of rounds is bounded byk.
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E. Worst-Case Amortized Models

For several models of computation including interactive communication, the simultaneous

resolution of several independent instances of a problem can be more efficient than the sequen-

tial resolution of the instances. This phenomenon is named thedirect-sum problemand was

introduced by Karchmer, Raz, and Wigderson [15] for communication complexity of relations

as a promising approach to separate the complexity classesNC1 andNC2 [16].

Let S � X�Y be an interactive communication problem, and let(x1; y1); (x2; y2); : : : ; (xl; yl)
be l independent instances ofS. PX knows (x1; x2; : : : ; xl), PY knows (y1; y2; : : : ; yl), and the

goal is for PY to learn all thexi from PX while minimizing the worst-case communication.

We write Ĉ1(Sl) for the simultaneous worst-case deterministic complexityof l instances of a

support setS, and theworst-case deterministic amortized complexityof S, written Â1(S), is

a complexity measure representing the average communication per instance and given by the

expression Â1(S) , liml!1 1l Ĉ1(Sl):
We write Ĉk(Sl) andÂk(S) when the number of rounds is bounded byk. Clearly,Ĉ1(Sl) � l �Ĉ1(S) andÂ1(S) � Ĉ1(S). Deterministic amortized complexity for interactive communication

has been studied by Naor, Orlitsky and Shor [14] and Alon and Orlitsky [17]. In the former

paper, it is proven that the deterministic amortized complexity is equal to the complexity whenPX knowsy in advance and that at most four rounds of communication are required to achieve

the optimal solution. Ahlswede, Cai and Zhang [13] have subsequently reduced the number of

rounds to three.

Result 7: Â3(S) = Â4(S) = � � � = Â1(S) = Ĉ�(S) = logcaY :
Example 8:We want to solve the league problem for two seasons, assuming that the results

are independent.PY wants to learn the identity of the two champion teams fromPX , who knows

the two pairs of finalists. Obviously, if both seasons are solved independently,2(dlog ne + 1)
communication bits are required. However, by treating the two seasons as one larger problem,

it can be shown [18] that̂C2(S2) � dlog ne + 6. When the number of teams in the league is

large, solving one or two instances requires roughly the same number of communication bits.

Moreover, Result 7 implies that the deterministic amortized complexity of the league problem
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is 1 bit per instance.

This paper examines the simultaneous resolution of several instances of interactive commu-

nication problems using nonzero-error randomized protocols:PX and PY are allowed to toss

private coins, andPX must learn(x1; x2; : : : ; xl) correctly with probability at least1 � �. We

write R̂�1(Sl) for thesimultaneous worst-case private coin randomized complexityof l instances

of a support setS, and theworst-case private coin randomized amortized complexityof S is

given by the expression

Â�1(S) , liml!1 1l R̂�1(Sl): (1)

Again, we writeR̂�k(Sl) and Â�k(S) when the number of rounds is bounded byk.

F. Worst-Case Distributional Model

In all the complexity models defined so far, any interactive communication problem is com-

pletely described by its support setS. In effect, since we consider the communication in the

worst case for all the possible input pairs(x; y), the probability distribution over the inputs is

irrelevant.

In our last nonzero-error model, we allow deterministic protocols to fail with probability 1 for

some pairs(x; y) 2 S as long as they are correct for most of the inputs. Let� be a probability

distribution overS. Theworst-case(�; �)-distributional complexityof S, written D̂�;�1 (S), is the

number of bits transmitted in the worst case by the best deterministic protocol that allowsPY
to learnx for a fraction at least1 � � of the inputs(x; y) 2 S, weighted by�. It is assumed

that the players use a agreed-upon protocol based on�.

The only model previously studied in the context of interactive communication and considering

a probability distribution over the inputs it the zero-error average-case deterministic model. It

has been studied by Orlitsky [19] and Alon and Orlitsky [20].PY wants to learnx with certainty

using a deterministic protocol and the goal is to minimize the expected number of bits that need

to be transmitted.
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III. PRIVATE COIN RANDOMIZED INTERACTIVE COMMUNICATION : ONE ROUND OF

COMMUNICATION IS ALMOST OPTIMAL

In this section, we study worst-case private coin randomized interactive communication. We

show that a single round of communication is almost optimal, more precisely that

R̂�1(S) � 4R̂�1(S) + o(R̂�1(S)):
Again, as mentioned in the introduction, this is quite different from worst-case deterministic

interactive communication and even from worst-case randomized communication complexity of

boolean functions.

Notice first that a randomized protocol can simulate a deterministic protocol by ignoring the

output of the random generators, thus

R̂�1(S) � Ĉ1(S): (2)

A first lower bound, Lemma 9, shows that for any support set, the difference between private

coin randomized complexity and one-way deterministic complexity is at most exponential.

Lemma 9: R̂�1(S) 2 
(log Ĉ1(S)):
Proof:

The proof is similar to that of Lemma 3.8 by Kushilevitz and Nisan [3], but for interactive

communication problems instead of boolean functions. Before proving the result, a few prelim-

inary notions are needed. A randomized protocolP for a support setS can be represented by

a binary tree. All the internal nodes of the tree are labeled by functions

fX ;N : X � f0; 1g� ! f0; 1g
or fY;N : Y � f0; 1g� ! f0; 1g;
and all its leaves are labeled by functions

fY;L : Y � f0; 1g� ! X:
During the execution ofP on input (x; y) with random stringsrX and rY , the players travel

down the tree following the values offX ;N and fY;N . When a node is labeled by a function
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fX ;N , PX computesfX ;N(x; rX ); if fX ;N(x; rX ) = 0, the next node is the left sibling of nodeN ,

and if fX ;N(x; rX ) = 1, the protocol continues with the right sibling. SincePY does not knowx nor rX , PX must tell him which sibling to choose by transmitting him a bit. When a node is

labeled by a functionfY;N(y; rY), PY executes the same process. The output of the protocol is

the valuefY;L(y; rY) 2 X of the leaf reached at the end of the execution, and the worst-case

cost ofP is the height of the tree.

We now prove the lemma. Given a randomized protocol forS, we transform it into a one-way

deterministic protocol. For each leafL of the protocol tree,PX sendspX ;L to PY , the probability

over the choices ofrX to reach leafL on inputx, skipping all the nodes labeled by the functionsfY;N . Each real number is sent usingp = � log �12 � �� + R̂�1(S) bits, which means that the

difference between the exact probability and its rounded value is at most2�p.PY then computespL = pX ;L � pY;L, the probability over the choices ofrX and rY to reach

leaf L. Furthermore, using the functionsfY;L : Y � f0; 1g� ! X, PY computes for each leaf

the probability to outputxi, for everyxi 2 a(y)1. Adding the results for all the leaves, he also

computes the probability over the choices ofrX andrY thatP outputsxi, for everyxi 2 a(y).
SinceP computesS with error at most�, there is a singlexi = x which is output with probability

at least1� �. The total rounding error is smaller than

2R̂�1(S) � 2�p = 2R̂�1(S) � 2� log( 12��)+R̂�1(S)
= 12 � �;

because the tree has at most2R̂�1(S) leaves and because only the information sent byPX has to

be rounded. Even with the rounding error, the probability computed byPY for xi = x is more

than 12 , hencePY concludes with certainty that the onlyxi 2 a(y) with probability greater than12 is x.

The communication complexity of the protocol is

Ĉ1(S) � 2R̂�1(S) � log�12 � ���1 + R̂�1(S)! ;
thus

R̂�1(S) � log Ĉ1(S)� log R̂�1(S)� c(�): (3)

1Recall thata(y) is the ambiguity set ofy.
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The result follows.

Lemma 9 can be used to show that when the difference between one-way and two-way

deterministic complexity is exponential, the deterministic and private coin randomized models

are equivalent.

Corollary 10: If Ĉ1(S) � 2 log Ĉ1(S), then

Ĉ1(S) � R̂�1(S):
If Ĉ1(S) 2 �(log Ĉ1(S)), then Ĉ1(S) 2 �(R̂�1(S)):

Proof: Combining (2) and (3), we get

log Ĉ1(S)� log Ĉ1(S)� c(�) � R̂�1(S) � Ĉ1(S):
If Ĉ1(S) � log Ĉ1(S), then asymptotically,

Ĉ1(S)� log Ĉ1(S)� c(�) � R̂�1(S) � Ĉ1(S);
thus Ĉ1(S) � R̂�1(S): The second case is proved in a similar way.

Example 11:Recall that for the league problem presented in Example 1,Ĉ1(L) = dlog ne+1
andĈ1(L) = n. Using Corollary 10, it follows that̂R�1(L) � log n; the worst-case deterministic

and private coin randomized models are thus equivalent for this problem.

Lemma 9 can also be used to show that the worst-case deterministic and private coin random-

ized are equivalent whenPY ’s ambiguity is constant.

Corollary 12: If caY 2 O(1), then

Ĉ1(S) � R̂�1(S):
Proof: From (2) and (3), it follows that

log Ĉ1(S)� log R̂�1(S)� c(�) � R̂�1(S) � Ĉ1(S):
Moreover, Ĉ1(S) � log log�+O(1) � log Ĉ1(S) +O(1)

2f(n) � g(n) if and only if lim
n!1

f(n)
g(n) = 1
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from the assumption and Results 4 and 5, thus

Ĉ1(S)� log R̂�1(S)�O(1) � R̂�1(S) � Ĉ1(S):
The next lemma tightens the bound from Lemma 9 for problems with small discrepancy

betweenĈ1(S) and Ĉ1(S).
Lemma 13: R̂�1(S) � logcaY � log 11� �:

Proof: Suppose that̂R�1(S) < logcaY � log 11�� . By definition, there exists a protocolP
for S requiring less thanlogcaY � log 11�� bits of communication and such that for every pair(x; y) 2 S, the probability thatPY does not learnx correctly is at most�.

Let y 2 Y be an input such thatja(y)j = caY . For every choice of the random stringsrX andrY , less than(1 � �) �caY distinct messages can be transmitted and it follows that the protocol

makes an error for more than� �caY of the xi 2 a(y). By a simple counting argument, there is

at least one elementx0 2 a(y) such that the error probability ofP on the input pair(x0; y) is

more than�, which is a contradiction.

The previous bound is very weak for problems for which the difference between one-way and

two-way worst-case deterministic complexity is large. For the league problem,caY = 2 and

Lemma 13 givesR̂�1(L) � 1. On the other hand, for balanced and symmetric pairs, it will be

shown in Section VII that the bound is tight. In fact, the two lower bounds presented in this

section are asymptotically equal to Results 3 and 4 for deterministic protocols. The next lemma

gives a strong upper bound on the private coin randomized complexity.

Lemma 14: R̂�1(S) � 2�log log�+ logcaY + log�1� � 1�+ 1� :
Proof: Let GS be the characteristic hypergraph ofS, and letx bePX ’s input. Recall thatPY has an inputy defining the ambiguity set (hyperedge)a(y) = fx1; : : : ; xlg and wants to learn

which of thexi is x. Let k , dlog�e � 1. Players agree on a proper coloring	 of GS with �
colors. We write the color of the verticess of GS in binary:	s , s0s1 : : : sk, wheresi 2 f0; 1g.
We consider these strings as polynomials inZp, wherep is a prime number such that�1� �� � k � (caY � 1)� < p � 2�1� �� � k � (caY � 1)� :
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Bertrand’s postulate [21] guarantees the existence of such ap. In other words, for a vertexs ofGS whose color is	s, 	s(t) � (s0 + s1t+ � � �+ sktk)(mod p).PX randomly choosesm 2 Zp and sendsm and	x(m) to PY . PY then constructs the set

Em = fxi j xi 2 a(y) ^	xi(m) = 	x(m)g;
randomly chooses an element ofEm and concludes that it isPX ’s input.

In order to show that the protocol works, we have to prove that the probability thatPY
answersx is at least1 � �. First, remark thatx 2 Em, thereforejEmj � 1 andPY can only

answer incorrectly whenjEmj � 2. Thus, we get

Pr[PY answersx] = X
j2Zp Pr[PX randomly choosesj 2 Zp ^ PY guesses correctly]

= 1p
p�1X
j=0 Pr[PY answersx j j is chosen]

= 1p
p�1X
j=0 1jEjj :

Furthermore, since	 is a proper coloring ofGS, all the vertices of the hyperedgea(y) have

a different color, thus the corresponding polynomials	s(t) are different. It implies that two

such polynomials can be equal for at mostk field elements because their difference, a nonzero

polynomial of degree at mostk, has at mostk roots. Hence, we can deduce thatp�1X
j=0 jEjj � k � (caY � 1) + p;

which implies that p�1X
j=0 1jEjj � p�k�(caY�1)+pp � ;

and thus

Pr[PY answersx] � 1k�(caY�1)p + 1
� 1k�(caY�1)k�(caY�1)� 1��

�
+ 1

= 1�1�� + 1 = 1� 11���= 1� �:
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Finally, the complexity of the protocol is

R̂�1(S) � 2dlog pe
� 2�1 + log�1� � 1�+ log log�+ logcaY� :

Using Lemma 14 with the league problem, we getR̂�1(L) � 2dlog ne+ c(�). More generally,

the lemma can be used to prove that the one-way private coin randomized complexity is at most

four times larger than the worst-case deterministic complexity.

Corollary 15: R̂�1(S) � 4Ĉ1(S) + �2 log 1�
� :

Proof: Using Lemma 14 and Results 3 and 4, we get

R̂�1(S) � 2�1 + log�1� � 1�+ log Ĉ1(S) + Ĉ1(S)�
� 2�1 + log�1� � 1�+ Ĉ1(S)� 1 + Ĉ1(S)�
� 4Ĉ1(S) + 2�log 1�

� :
Combining Lemma 14 with the two lower bounds proved in this section, we can conclude that

one round of communication is almost optimal for worst-case private coin randomized protocols.

Corollary 16: R̂�1(S) � 4R̂�1(S) + o(R̂�1(S)):
Proof: From Result 4 and Lemmas 9, 13 and 14 it follows that

R̂�1(S) � 2 log Ĉ1(S) + 2 logcaY + c1(�)
� 4R̂�1(S) + 2 log R̂�1(S) + c2(�)
� 4R̂�1(S) + o(R̂�1(S)):
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IV. PUBLIC COIN RANDOMIZED INTERACTIVE COMMUNICATION

In this section, we characterize worst-case public coin randomized interactive communication.

Firstly, we prove that one round of communication is optimal for this model; the complexity

corresponds to the amortized complexity and to the communication required whenPY knowsy in advance. Secondly, we give an upper bound on the difference between the private coin

and public coin randomized models and use it to improve the upper bounds on the one-way

private coin complexity derived in the previous section. Notice first that the players can use the

concatenation of the private stringsrX and rY as a public random string, thus the public coin

randomized model is at least as powerful as the private coin randomized model, i.e.,

R̂�;pubk (S) � R̂�k(S):
A. One Round of Communication is Optimal

Lemma 17:

logcaY � log 11� � � R̂�;pub1 (S) � R̂�;pub1 (S) � dlog(caY � 1)e+ �log 1� ��
� :

Proof:

Lemma 13 can be applied with a public random generator for the lower bound. For the upper

bound, recall thatPX has an inputx andPY has an inputy defining the ambiguity set (hyperedge

of the characteristic hypergraph)a(y) = fx1; : : : ; xlg = fx j (x; y) 2 Sg. It is assumed that the

elements ofX are coded usingdlog jXje bits. PX choosesk random subsets of the bits of his

input x and, for each of these subsets, sends the parity of the bits toPY . PY then computes thek corresponding parities for each of the inputsxi 2 a(y). Each time a parity differs from the

corresponding result sent byPX , PY deduces thatxi 6= x and discards it. WhenPY has done

all the comparisons, he randomly chooses an input among those which have not been discarded

and concludes that it isPX ’s input.

The probability of not discarding a vertexxi is 1 if x1 = x and 12k otherwise. LetZ be a

random variable representing the number of inputs not discarded afterk iterations. Since there

area(y)� 1 inputs to discard, it follows that

E(Z) = 1 + 12k (a(y)� 1) � 1 + 12k (caY � 1):
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The probability thatPY learnsPX ’s input correctly isE � 1Z �, and Jensen’s inequality gives

Pr[PY answersx] � 1E[Z] = 11 + 12k (caY � 1) :
By letting k = dlog(caY � 1)e+ �log 1��� �, it follows that

Pr[success]� 11 + 12dlog(daY�1)e+dlog 1��
� e � (caY � 1)

� 11 + 1
1��
�= 1� �;

from which we conclude that

R1�;pub(S) � k = dlog(caY � 1)e+ �log 1� ��
� :

Example 18:If we apply Lemma 17 to the league problem, we getR̂�;pub1 (L) � �log 1��� � 2�(1). It shows that one-way public coin randomized complexity can be arbitrarily better than

one-way deterministic complexity.

B. Difference Between the Private Coin and Public Coin Models

Private coin randomized complexity cannot be much worse than public coin randomized

complexity: every public randomized protocol can be transformed into a private randomized

protocol whose error probability is slightly larger, and which uses a few more communication

bits. It is inspired by a similar result for boolean functions shown by Newman [22].

Theorem 19:For all � > 0 and for all � > 0 such that�+ � < 1,

R̂�+�1 (S) � R̂�;pub1 (S) + log log jSj+ log 1�2 + 1:
Proof: Let P be a public coin randomized protocol forS whose error is bounded by� and requiringR̂�;pub1 (S) communication bits. We suppose the random generatorr follows a

probability distribution�. Let Z(x; y; r) be a random variable equal to 1 if the answer given byPY following the execution ofP on input (x; y) is incorrect (different fromx), and equal to 0

if correct. SinceP solvesS with error at most�, it follows that Er2�[Z(x; y; r)] � � for every

pair (x; y) 2 S.
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A new protocol forS using less random bits is designed. Lett be a parameter to be fixed

later, and letr1; r2; : : : ; rt be binary strings. The protocolPr1;r2;:::;rt is defined as follows:PX
andPY randomly choosei between 1 andt and run protocolP with the common random stringri.

We now show that there exists stringsr1; r2; : : : ; rt such thatEi [Z(x; y; ri)] � � + � for

every pair (x; y) 2 S. We choose thet strings r1; r2; : : : ; rt randomly following the proba-

bility distribution �, consider an arbitrary pair(x; y) 2 S and compute the probability thatEi [Z(x; y; ri)] > � + � (where i is uniformly distributed). This is equivalent to the probability

that 1t Pti=1 Z(x; y; ri) > �+ �. Since Er2�[Z(x; y; r)] � �, Chernoff bound yields

Prr1;:::;rt
"1t

tX
i=1 Z(x; y; ri)� � > �# � 2e�2�2t:

By choosingt = l log jSj�2 m, it follows that

2e�2�2t = 2e�2�2d log jSj
�2 e

� 2e�2 log jSj
= 2 � 2�2 log e log jSj
= 2jSj�2 log e
< 1jSj when jSj > 1:

Thus, for a random choice ofr1; : : : ; rt, the probability that there exists at least a pair(x; y) 2 S
(there arejSj such pairs) such thatEi [Z(x; y; ri)] > �+� is smaller thanjSj� 1jSj = 1. Consequently,

there exists a choice ofr1; : : : ; rt such that for every pair(x; y) 2 S, the error of protocolPr1;r2;:::;rt is at most�+ �. The number of random bits used byPr1;r2;:::;rt is dlog te, and in order

to transform the public protocol into a private protocol,PX has to randomly choosei between 1

andt and to send it toPY . Moreover, from Lemma 17, there exists an optimal one-round public

coin randomized protocol forS ensuring thatPr1;r2;:::;rt is also a one-way protocol. Hence,

R̂�+�1 (S) � R̂�;pub1 (S) + dlog te
� R̂�;pub1 (S) + �log � log jSj�2

��
� R̂�;pub1 (S) + log log jSj+ log 1�2 + 1:
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Example 20:The previous theorem is applied to the league problem, for whichjSj = (2n) �(2n � 1). This gives

R̂�0+�1 (L) � R̂�;pub1 (S) + log log jSj+ log 1�2 + 1
� log log j2n(2n � 1)j+ c(�0; �);

thus R̂�1(L) � log n + c(�). There exists an optimal one-way private coin randomized protocol

for this problem; it improves the bound given by Lemma 14, which is not optimal, and the

result from Example 11, which does not limit interaction between the players. This example

also proves that the bound given by Theorem 19 can be reached.

Theorem 19 can also be used to tighten the upper bounds on the one-way private coin

randomized complexity presented in Section III.

Corollary 21: For all � > 0 and for all � > 0 such that�+ � < 1,

R̂�+�1 (S) � dlog(caY � 1)e+ log log jSj+ �log 1� ��
�+ log 1�2 + 1:

Corollary 22: R̂�1(S) � log log � + logcaY + log logcaY + c(�):
Proof: Recall that� is the number of hyperedges in the characteristic hypergraphGS.

Suppose that for eachy 2 Y corresponds a different hyperedge; if is not the case, the players

agree on an equivalent support setS 0 � X 0�Y 0, S 0 � S, such that for eachy 2 Y 0 corresponds a

distinct hyperedge. It follows thatjS 0j � jY 0j �caY0 � � �caY , and the result follows from Theorem

19 and Lemma 17.

If X = Y = f0; 1gn, the difference between the private and public coin randomized models

is at most an additive term oflog n + O(1) bits. Using Result 5, the same thing can be said

about the difference between the deterministic and public coin randomized models. In fact, the

similarity between Result 5 and Corollary 22 is striking considering how different the models

and the proofs are.

Corollary 23: R̂�1(S) � 3R̂�1(S) + o(R̂�1(S)):
Proof: Since the hypergraphGS can be colored with� colors, there exists a support setS 0 equivalent toS having at most

caYPi=1 � �caY� � �caY distinct hyperedges. The result follows from

Corollary 22 and Lemmas 9 and 13.
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Corollary 24: R̂�1(S) � 3Ĉ1(S) + o(Ĉ1(S)):
V. PRIVATE COIN RANDOMIZED AMORTIZED INTERACTIVE COMMUNICATION : ONE

ROUND OF COMMUNICATION IS OPTIMAL

In this section, we show that one round of communication is optimal for the private coin

randomized amortized model; the complexity is equal to the number of bits that need to be

transmitted whenPX knows y in advance. This is an improvement over the deterministic

amortized model, for which interaction is required in order to minimize the communication.

Lemma 25: Â�1(S) = Â�2(S) = � � � = Â�1(S) = logcaY :
Proof:

A mentioned in Section II,l independent instances of a support setS � X � Y can be

treated as a larger support setSl. Let GlS be the characteristic hypergraph ofSl. It is not hard to

show that the vertices ofGlS are the elements ofX l, and that for eachl-tuple (e1; e2; : : : ; el) of

hyperedges ofGS, e1� e2� � � � � el is a hyperedge ofGlS. Clearly, the maximum ambiguity ofPY for the support setSl is caY l, and the number of different hyperedges ofGlS is �l. It follows

from Lemma 13 that R̂�1(Sl) � l � logcaY � log 11� �;
and Corollary 22 gives

R̂�1(Sl) � log log � + l � logcaY + log logcaY + 2 log l + c(�):
The result follows from the definition of̂A�1(S) and Â�1(S) given by Eq. (1).

Lemma 25 shows that when several instances are solved simultaneously instead of sequentially,

there is no advantage to use a public coin over private coins since no interaction is required and

the amount communication is the same. Also, comparing Lemma 25 and Corollary 21 whenjSj 2 O(2cn) (this includes the support setsS � f0; 1gn � f0; 1gn), the difference between the

private coin randomized complexity and the private coin randomized amortized complexity is at

most an additive term oflog n+O(1) bits. The bound is tight for the league problem. The same

discrepancy between the deterministic complexity and the deterministic amortized complexity is

implicit in the work of Naor, Orlitsky and Shor [14] using Results 5 and 7.
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VI. D ISTRIBUTIONAL INTERACTIVE COMMUNICATION : ONE ROUND OF COMMUNICATION

IS OPTIMAL

In this section, we study worst-case distributional complexity, starting with yet another example

using the league problem.

Example 26:Suppose that the support setL follows a uniform distribution, and without loss

of generality, thatn, the length of the team names, is an even integer.PX sends two bits toPY :

the parity of the firstn2 bits of the champion’s name, followed by the parity of the lastn2 bits.PY
computes the equivalent parities for the two teams playing for the championship and compares

the results with the bits received fromPX . The protocol will err for the pairs of finalist teams

with identical parity bits, and there arejSj � �14 � 12n � such pairs. Hence,̂Duniform; 141 (S) � 2.

It should be noted that for every interactive communication problem and for all� > 0, there

exists a probability distribution over the inputs for which the distributional complexity is 0,

for example if there is an input pair occurring with probability at least1 � �. Consequently, it

is interesting to consider probability distributions maximizing the number of bits that need to

be transmitted, and even in this case communication can be more efficient than when no error

is allowed. The main result of this section is that the distributional complexity with the worst

possible probability distribution over the inputs is equal to the public coin randomized complexity.

Again, it is equivalent to the complexity whenPX knowsy in advance. This is hardly a surprise,

since the equivalence between the randomized and distributional models was first established by

Yao [23] for computational complexity using von-Neumann’s Minimax Theorem of game theory

[24]. The equality is also verified for communication complexity of boolean functions (see, for

example, [3]), and the proof can be applied without modification to partial domainsS � X�Y .

We present a simpler proof tailored for interactive communication problems and improving the

original proof in two ways. Firstly, a family of asymptotically ”worst” probability distributions

over the inputs is described. The distributions can be used with any interactive communication

problem and probability of error. Secondly, an optimal protocol requiring a single round of

communication is constructed.

Lemma 27:

logcaY � log 11� 2� � max� D̂�;�1 (S) � max� D̂�;�1 (S) � dlog(caY � 1)e+ �log 1� ��
� :
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Proof: Let S � X�Y be an interactive communication problem. To prove the lower bound,

the following probability distribution�0 over S is used: there is ay0 2 Y with ja(y0)j = caY3,

and Pr[(x; y) = (xi; y0)] = 12caY for everyxi 2 a(y). The probability of all the other input pairs(x; y) 2 S can be any nonzero value.

Suppose that̂D�0;�1 (S) < logcaY � log 11�2� , and letP be an optimal protocol forS. For any

pair (x; y) 2 S, less thancaY � (1 � 2�) distinct messages can be exchanged betweenPX andPY . It follows that whenPY has the inputy0, the protocol fails on more than2� �caY input pairs(xi; y0), each pair occurring with probability12caY . Hence,P fails with probability more than�
over S, which is a contradiction, and

logcaY � log 11� 2� � D̂�0;�1 (S) � max� D̂�;�1 (S):
To prove the upper bound, the public coin protocol presented in Lemma 17 is used. Recall

that by receiving the parity ofk = dlog(caY � 1)e + �log 1��� � random subsets of the bits ofx
from PX , PY can learnx with probability at least1 � � for every valid input pair. Since the

protocol works for any probability distribution over the inputs, it succeeds with probability at

least1�� when the probability distribution is taken over the inputs and the choice of the subsets.

By a simple counting argument, it follows that there existsk subsets of the bits ofx for which

the protocol succeeds for at least a fraction1 � � of the inputs weighted by their probability

distribution.

The protocol from Lemma 17 is derandomized as follows: for a fixed� and a fixed�, PX
andPY agree onk subsets for which the protocol fails on at most a fraction� of S weighted

by �. PX sends the parity of thek subsets ofx to PY , who compares the received bits with

the k corresponding parities for each of the inputsxi 2 a(y). If more than one of thexi is not

discarded,PY chooses the one whose input probability giveny is the highest. The complexity

of the protocol is

max� D̂�;�1 (S) � R̂�;pub1 (S) � k � dlog(caY � 1)e+ �log 1� ��
� :

The family of ”worst” probability distributions presented in the previous proof is not unique.

For example, when the ambiguity of every inputy 2 Y is maximal, i.e.,ja(y)j = caY , it is not

3Such ay0 always exists.
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hard to show that the uniform distribution also maximizes the required number of communication

bits. The league problem is an example of such a support set:PY always picks the winner among

two teams.

VII. E QUIVALENCE OF ALL THE MODELS FORBALANCED AND SYMMETRIC PAIRS

All the worst-case complexity models introduced in this paper require asymptotically at leastlogcaY bits of communication, and with the exception of the deterministic and private coin

randomized models, asymptoticallylogcaY bits suffice. For some support sets like the league

problem, the difference betweenlogcaY andĈ1(S) is large, but for other problems, the amortized

or nonzero-error models cannot be used to reduce the number of communication bits. Consider

the following modification of the league problem: eitherPY knows the two teams playing for

the league championship, or he doesn’t know anything. It is obvious that in the worst case,

whether it is the worst input of the worst probability distribution over the inputs,PX has to send

asymptotically all the bits of the champion’s name toPY and he can do so in a single round

of communication. For the problems mentioned in the next lemma, all the worst-case models

presented in this paper are asymptotically equivalent and inefficient: randomization, nonzero-error

protocols, solving several instances simultaneously, knowingy in advance and even interaction

cannot significantly reduce the communication betweenPX andPY .

Lemma 28:If there is ay 2 Y with ja(y)j = caY = jXj, or if S is a Cartesian-product support

set, then Ĉ1(S) = dlogcaYe :
Proof: Result 3 gives a lower bound ofdlogcaYe. If caY = jXj, thenPX has to describex

completely; he can do so usingdlog jXje = dlogcaYe bits. If S is a Cartesian-product support

set, then there existsX 0 2 X andY 0 2 Y such thatS = X 0�Y 0. Again,caY = jX 0j andPX can

describex with dlog jX 0je = dlogcaYe bits of communication.

It is also possible to prove that all the worst-case complexity models are equivalent for balanced

and symmetric pairs. Recall that a support setS is balanced ifcaX = caY and symmetric if(x; y) 2 S if and only if (y; x) 2 S.

Theorem 29:Let S be a balanced support set, and let0 < � < 1. The deterministic, amortized

deterministic, deterministic whenPX knows PY ’s input, private coin randomized, public coin

randomized, distributional and private coin randomized amortized models are equivalent. More
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precisely,

Ĉ�(S) � Ĉ3(S) � Ĉ�(S) + o(Ĉ�(S)); (4)

Ĉ�(S)� 1 � Â3(S) � Ĉ�(S); (5)

Ĉ�(S)�O(1) � R̂�3(S) � Ĉ�(S) + o(Ĉ�(S)); (6)

Ĉ�(S)�O(1) � R̂�;pub1 (S) � Ĉ�(S) +O(1); (7)

Ĉ�(S)�O(1) � D̂�;�1 (S) � Ĉ�(S) +O(1); (8)

Ĉ�(S)� 1 � Â�1(S) � Ĉ�(S): (9)

Proof: Inequality (4) can be deduced from Results 3 and 6; Inequality (5) from Results 3

and 7; Inequality (6) from Results 3 and 6, Inequality (2) and Lemma 13; Inequality (7) from

Result 3 and Lemma 17; Inequality (8) from Result 3 and Lemma 27; Inequality (9) from Result

3 and Lemma 25.

Unfortunately, Theorem 29 means that nonzero-error algorithms cannot significantly reduce

the communication for all the practical applications mentioned in the introduction. This is a

somewhat “negative” result, but only because deterministic protocols are already very efficient.

Nevertheless, nonzero-error models, even the private coin randomized model, allow efficient one-

way protocols. For most practical applications of symmetric pairs, the ambiguity of the players

increases at least polynomially with the size of the inputs; in this case there exists a private

coin randomized protocol using a single round of communication and whose communication

complexity is almost optimal. If the ambiguity of the players increases superpolynomially with

the size of the inputs, then the best one-round private coin randomized protocol is optimal.

Lemma 30:Let S be a balanced support set withX = f0; 1gn, and let0 < � < 1 andk � 1.

If caY 2 �(nk), then

Ĉ�(S)�O(1) � R̂�1(S) � �1 + 1k
� � Ĉ�(S) + o(Ĉ�(S)):

If k 2 !(nk) for all k � 1, then

Ĉ�(S)�O(1) � R̂�1(S) � Ĉ�(S) + o(Ĉ�(S)):
Proof: The lower bound comes from Lemma 13. For the upper bound, Corollary 21 gives

R̂�1(S) � logcaY + log log jSj+ c(�)
� logcaY + log log(jXj �caY) +O(1);
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and if caY 2 �(nk) it follows that

R̂�1(S) � (k + 1) log n+ o(log n)
� k + 1k � log nk + o(log n):

The casek 2 !(nk) for all k � 1 is proved similarly.

Example 31:A large databaseD on a PC has to be synchronized with an updated versionD0
of the database stored on a PDA. The problem can be viewed as aset reconciliationproblem [25],

and for this example we assume thatD andD0 are sets of integers in[1; 106], thatD0 has to be

conveyed to the PC, and thatD andD0 differ for at most 1000 entries, i.e.,jDnD0j+ jD0 nDj �1000. Translated in the interactive communication framework,D andD0 can be expressed as

binary stringsx andy such thatxi = 1 (yi = 1) if and only if i 2 D (i 2 D0). The correlation

betweenD andD0 gives an upper bound on the Hamming distance betweenx andy, thus the

support set is symmetric andcaX = caY = 1000Pi=0 �1000000i �
.

From Result 6, we know there exists a 3-round deterministic algorithm requiring 11452 bits

of communication. Nonzero-error algorithms cannot do much better: from Lemma 13, even with

a public random string, at least 11401 bits have to be exchanged in order forPY to learnx with

error at most�, for 0 < � < 12 . From Lemma 17, there exists a one-way public coin randomized

protocol transmitting 11452 bits with a2�50 probability of error, and a one-way private coin

randomized protocol transmitting 11576 bits with a2�50 probability of error from Corollary 21.

The results just stated assume thatPX and PY have unbounded memory and computing

power. For several classes of symmetric support sets, a lot research has been done to design

algorithms with reasonable tradeoffs between the number of rounds, communication complexity,

computational complexity and storage space. Of course, the requirements vary widely depending

on the application and the size of the maximum ambiguity of the players.

VIII. O PEN PROBLEMS

In this paper, we have studied worst-case nonzero-error interactive communication. We have

shown that if the players are allowed to use public coins, to answer correctly on a fraction of the

inputs or to solve a large number of instances simultaneously, then interaction is not necessary

and in some cases the communication can be significantly reduced. Although we have proved that

March 6, 2006 DRAFT



27

one round of communication is almost optimal, we have not been able to completely characterize

the private coin randomized model, and in this section we discuss two open problems.

A. One-Way Private Coin Randomized Complexity

Is one round of communication optimal for private coin randomized complexity? If not, is

there ak such that an optimalk-round protocol always exists, i.e., ak such that

R̂�k(S) � R̂�1(S) + o(R̂�1(S))?
The lower bounds for private coin randomized complexity presented earlier do not restrict the

number of rounds betweenPX andPY . Moreover, it is not clear if existing techniques for proving

lower bounds for other models of computation like communication complexity of non-boolean

functions can be used to derive stronger lower bounds in the interactive communication setting.

As for upper bounds, although it is not obvious how randomized protocols can use interaction

to reduce the the number of bits that need to be transmitted, our best upper bound, Theorem 19,

is not always tight.

B. Deterministic Model Versus Private Coin Randomized Model

The private coin randomized model allows almost optimal one-way protocols, but it does not

seem that it can be more efficient than determinism when interaction is allowed. In fact, we

conjecture that the worst-case deterministic and worst-case private coin randomized models are

equivalent, i.e., R̂�1(S) � Ĉ1(S):
In Section III, we have shown that the models are equivalent whenPY ’s maximum ambiguity

is constant. This includes all the maximally unbalanced pairs like the league problem, i.e, pairs

with caY 2 O(1) and caX 2 
(jXj). In Section VII, it has been proved that the models are

equivalent for balanced and symmetric support sets. Thus, in order to solve the conjecture, one

needs to study problems for which the private coin randomized complexity is not tightly bounded

by Lemmas 9 and 13, i.e., problems that are neither balanced nor too unbalanced.
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