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Abstract

In the interactive communication model, two distant parfiegsand Py respectively possess private
but correlated inputg andy, and Py, wants to learnc from Py while minimizing the communication
for the worst possible input pafr, ). Our main contribution is the analysis of nonzero-error models in
this correlated data setting. In the private coin randomized model, both players are allowed to toss coins
and Py must learnz with high probability for every input pair. The public coin randomized model is
similar to the first model, but instead of private coins, both players have access to a common source of
randomness. The private coin randomized amortized model is also similar to the first model, with the
addition that the players are also allowed to solve several independent instances of the same problem
simultaneously instead of sequentially. The last model, called the distributional model, is deterministic,
but Py is allowed to answer incorrectly for a small fraction of the inputs weighted by their probability
distribution.

We show that the public coin randomized, private coin randomized amortized and distributional
models are equivalent and can reduce the communication compared to the original worst-case deter-
ministic model. Moreover, when the players are not allowed to interact, the difference between the
best deterministic and public coin randomized protocols can be arbitrarily large. We prove that one
round of communication is almost optimal for the private coin randomized model. We also show that

the deterministic model and all the nonzero-error models are equivalent for a large class of symmetric
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problems arising from several practical applications, although nonzero-error and randomization allows

efficient one-way protocols.

Index Terms

Interactive communication, nonzero-error, randomization, worst-case protocols, communication com-

plexity

. INTRODUCTION

Interactive communication was introduced by Orlitsky [1] and lies at the intersection of
information theory and communication complexity. It studies the amount of communication
needed for one party to convey information to a second party who has correlated information. Two
players, aninformant Py and arecipient Py, respectively possess private but correlated inputs
andy. Py wants to learn his interlocutor’s input without error while minimizing the number of
bits that need to be transmitted in the worst case. To do so, they alternately exchange data on a
noise-free channel following a deterministic protocol they have agreed upon initially. Unlike the
original communication complexity model [2] (see [3] for an exhaustive survey), the function to
be computed is trivial {(z,y) = z), but the problem is to exploit the correlation between the
parties’ knowledge for reducing the required amount of communication. The following example
illustrates the model.

Example 1:The League Problem [1]

A sport league ha®" teams, and the name of each team is a binary stringlofs. P, knows
the two teams playing in the championship match, but a blackout during the game restricts him
to learn who wins.Py, on the other hand, hears the name of the champion team on the radio
but has no idea who is the runner-up; wants to learn the identity of the champion team from
Py with certainty while minimizing the communication.

If only one round of communication fron?y to Py is allowed, thenPs; has to transmit the
n bits of the winning team. If less tham bits are transmitted, there are two teams for which
Py sends the same message; if those two teams happen to play in the championship match, the
Py is not able to learn the winner with certainty. However, a substantial gain can be achieved
when interaction is allowedPy, sends the position of one of the bits where the names of the

two finalists differ, which requireslog ] bits. It is then sufficient foi’y to send the bit of the
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winning team at the required position. This protocol requireg n| + 1 communication bits,

an exponential gain compared to the one-way protocol. Moreover, Orlitsky has shown that even
if more than two rounds of communication are allowed, no protocol can solve the problem by
exchanging a smaller number of bits in the worst case.

Although the example above might seem artificial, interactive communication includes a large
class of symmetric problems [4] inherent to several practical applications including synchroniza-
tion of mobile data [5], reconciliation of sequences of symbols such as nucleotides sequences
in DNA molecules [6], remote data storage [7] and quantum key distribution [8].

In this paper, we study worst-case nonzero-error interactive communication and compare the
results with the original worst-case deterministic model. We allywto learn Py's input with
a probability of error at most and study how it can improve the communication, either by
reducing the number of bits that need to be exchanged or by reducing the number of rounds of
communication. Four nonzero-error models are presented. The first model, worst-case private coin
randomized interactive communication, alloWs to learnz with probability at leasi — ¢ for all
the possible input pairge, y). The players can also use randomized protocols: each player has a
private, independent source of randomness whose output can be used to decide which bits should
be transmitted. The second model, worst-case public coin randomized interactive communication,
also allowsP), to learn Py ’s input with probability at least — ¢ for all the possible input pairs.

It also uses randomized protocols, but instead of private coins, both players can use a public
(common) random generator. The third model, worst-case private coin randomized amortized
interactive communication, allows the players to solve several independent instances of the same
problem simultaneously instead of sequentially. The players are again permitted to use private
coins, andPy, can fail to learn: with probability at most for every input pair. The fourth model,
worst-case distributional interactive communication, permits only deterministic protocolB;, but

can learnz incorrectly for a fraction at most of all the inputs weighted by their probability
distribution.

We prove that the worst-case public coin randomized, private coin randomized amortized
and distributional models are equivalent and that optimal protocols for the three models do not
require interaction between the players. The models can be arbitrarily better than the worst-case

deterministic model when a single round of communication filggmto Py is allowed.
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We show that for Cartesian-product pairs, the deterministic and all the nonzero-error models
are equivalent and inefficient. The models are equivalent and efficient for symmetric problems
including all the applications previously mentioned, although nonzero error and randomization
allows efficient protocols using only one round of communication.

The most challenging model is the worst-case private coin randomized model. We show that
the best one-round protocols for this model are at most three times more expensive than the best
randomized or deterministic protocols using an unbounded number of rounds of communication.
This is a striking difference from the deterministic model, for which Orlitsky [1] has shown
that the best one-round protocols can require to the transmission of exponentially more bits
than the optimal protocols. It is also different from randomized communication complexity of
boolean functions, which exhibits the same phenomenon [9]. We also prove that the worst-
case randomized and deterministic models are equivalent for several classes of problems and
conjecture that both models are equivalent for all the interactive communication problems.

The outline of the paper is as follows. In Sectjon I, we describe the complexity models and
present the existing work. The private coin and public coin randomized models are treated in
Sections lll and 1V, respectively. Randomized amortized interactive communication is studied in
Section V, and the distributional model in Sectfor] VI. The results for balanced and symmetric
problems are presented in Section|VIl. Finally, in Section|VIIl, we discuss open problems related

to the private coin randomized model.

II. COMPLEXITY MODELS AND KNOWN RESULTS
A. Preliminaries

The framework for studying interactive communication was introduced by Orlitsky in his
seminal paper [1]. LefX andY be finite sets, and let C X x Y/, the support setof (X,Y),
define an interactive communication problem. Two playéts, and Py, possess respectively
inputsz € X andy € Y such that(z,y) € S, and they wantP), to learnz while minimizing
the communication between them (it is not necessarypito learny). It is assumed that the
communication between the players is binary.

A k-round protocolis a protocol such that for every input, there are at ntostl alternations
between the data sent by, and the data sent by,. Due to the asymmetric nature of the

interactive communication model, it is assumed that the last round of communication is always
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from Py to Py. A 1-round protocol is also calledne-way and a protocol requiring more that
one round of communication is callédo-way

A hypergraph is an ordered pait = (V, E'), whereV’ is the set of vertices anfl the set of
hyperedges. Each hyperedge is a subsét .ofwo distinct vertices;; and v, of a hypergraph
are adjacent if there is an edgec F such thatv; € e andv, € e. A proper coloringof a
hypergraph is a partition of in colors such that no adjacent vertices have the same color. The
chromatic numbery of a hypergraph is the smallest number of colors for which there exists
a proper coloring ofG. A convenient way to analyze an interactive communication problem
S C X x Y is to use itscharacteristic hypergraplizs. The vertices of75 are the elements of
X, and for everyy € Y there is a hyperedg&(y) = {z | (z,y) € S}. The number of different
hyperedges of7s is denoteds. It should be noted that all the asymptotic bounds presented in
this paper only make sense for the support sets for whkide a function of the size of the
inputs.

The ambiguity setof an inputz € X, defined asu(z) 2 {y € Y | (z,9) € S}, is the set
of all possible inputs forPy, given thatPs’s input is z, and theambiguityof z is |a(x)|. The
maximum ambiguitgf Py, ay = rgea)§<{|a(x)|}, is the maximum number of possible elements of
Y for any element inX. Note thata(y), |a(y)| anday are defined similarly with the assumption
thatay > 1, since a support set with @y, = 1 is trivial and does not require communication.

Example 2:As an illustration for the league problem presented in Example 1,
the support sel is defined asl. = {(¢1, {t1,t2}) | t1 # t2}, wheret;,t, € {0,1}™ are teams.
The vertices ofGG;, are the teams of the league and its hyperedges are the possible match-ups
for the championship game. It follows that the maximum ambiguity’gfis the the number of
possible runner-ups given the champion team £ 2" — 1), and the maximum ambiguity of
Py is the number of possible champion teams given the two finalisis=(2).

A support setS C X x Y is a Cartesian-productsupport set if there existy’ C X and
Y’ C Y such thatS = X' x Y. A support setS is balancedif ay = ay. A symmetricsupport
set is a support such thét,y) € S if and only if (y,z) € S (it is clear that symmetric support
sets are also balanced). Symmetric support sets arise naturally in all the problems for which the
parties’ inputs are bounded by a certain "distance”, including all the applications mentioned in

Section |l.
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B. Worst-Case Deterministic Model

The worst-case deterministic model was introduced by Orlitsky [1]. It has the following

characteristics:

1) Both players send information according to a deterministic protocol. Each player sends
messages based on his input and the messages previously received.

2) When a player sends a message, his interlocutor knows when it ends, and both players
know that the transmission ends when the protocol halts. cbuewordof (z,y) € S is
the concatenation of the messages sent by the players on the inpyt pgir It can be
shown that the set of possible codewords is prefix-free.

3) Py has to learn: without error for every paifz,y) € S.

The worst-case deterministic complexity a support sef5, written C“m(S), is the minimum
number of bits the players have to exchange in orderHpito learnz without error for every
pair (z,y) € S. We write Cx(S) when the number of rounds of communication is bounded by
k; obviouslyC,,(S) decreases with andC,.(S) = Lim C1(S). We write C*(S) for the number
of bits that need to be transmitted i,y knowsy in advance.

The following results have been shown by Orlitsky [1]. A deterministic protocol requires at
least [log ay| bits of communication, otherwise [fi(y)| = ay, then there are different input
pairs (zy,y) and (x4, y) for which the communication between the players is the same. Clearly,
the bound is tight ifP, knowsy in advance and a single round of communication is sufficient.

Result 3:

Coo(S) > Nogay] = C*(5).

The one-way deterministic complexity is the logarithm of the chromatic number of the un-
derlying hypergraph of the problem, and one-way protocols require at most exponentially more
bits than protocols allowing interaction.

Result 4:

Cao(S) > Tlog C1(S)] + 1 = [log[log X7 + 1.

A remarkable result from Orlitsky is that two rounds of communication are almost optimal
for every problem, i.e.,

C5(S) < 4C«(S) + 3.
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This is quite different from the original communication complexity model, where for every
k > 0, there is a function whose bestround protocol requires exponentially more bits than its
best(k + 1)-round protocol [10].

Orlitsky [11] has shown in a subsequent paper that two rounds of communication are not
optimal for worst-case deterministic interactive communication, and Zhang and Xia [12] have
proved that three rounds are not optimal either. Ahlswede, Cai and Zhang [13] have conjectured

that four rounds are optimal, but the problem remains open, i.e., whether thefegach that
Cr(S) < Coo(S) + 0(Cs(9)).

Naor, Orlitsky and Shor [14] have proved an upper bound on the 4-round deterministic
complexity.
Result 5:

Cy(S) < loglogo + logay + 3loglogay + 7

< loglog x + 2logay + 3loglogay + 7

< 3C(8) + o(C(S)).

Balanced and symmetric support sets have been studied by Orlitsky [4], who has proved that
the best one-way protocols require at most two times the amount of communication required by
optimal protocols, i.e,

C1(S) < 2Cu(S) + 1,

and that three rounds of communication are optimal.

Result 6: Let S be a balanced support set. Then,

Cua(S) < C5(S) < log@y + 3loglog@y + 11 < Cou(S) + 0(Co(S)).

C. Worst-Case Private Coin Randomized Model

In our first nonzero-error modely, is allowed to learn: with probability of errore. The
players are also allowed to toss cois; and Py, possess respectively independent finite random
stringsry andry of arbitrary length. The communication bits become random variables: bits
sent byP, depend on: andry, and bits sent by?y, depend ory andry. It is therefore possible
that for a fixed input paifz,y), a protocol outputs different results for different valuesrgf

andry.
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Let S be a support set and 18 be a randomized protocoP computesS with error e if,
for every pair(z,y) € S, the probability thatPy, answersz on input(z,y) is at leastl — .
The worst-case communicatioof a protocolP on input(z, y) is the maximum number of bits
communicated for any choice of the random strimgset ry,. The worst-case cosof P is the
maximum, for all the inputgz, y), of the worst-case communication &fon (z, y).

The e-error worst-case randomized complexif S, written R<_(S), is the minimum worst-
case cost of a randomized protocol computihgvith errore, for 0 < € < % In other words,
R _(S) is the number of bits transmitted in the worst-case by the best protocol which, for every
pair (xz,y) € S, allows Py, to learnz with probability at least — e. We write R;(S) when the
number of rounds is bounded Iy Also, for the rest of this paper unless specified otherwise,
e is constant and(e) is a function ofe.

In his original paper, Orlitsky [1] has briefly studied a weaker randomized model considering
the average communication over the choices pfand ry, for the worst input pair. Using this
model, he has shown that the one-way randomized complexity is at more four times the worst-

case deterministic complexity, i.e.,

RE(S) < 4Cou(S) + 2log .
€

D. Worst-Case Public Coin Randomized Model

In the randomized model previously defined, each player has his own random genggator.
cannot see-, and vice-versa. In the public coin randomized model, both players can access a
common "public” random coin. Formally, both players have a common random stfolgpwing
a probability distribution[I. Communication bits sent b¥, depend onr andr, and those sent
by Py, depend ory andr. A public coin randomized protocol can also be viewed as a probability
distribution over a family of worst-case deterministic protocols.

Thee-error worst-case public coin randomized complexitya support sef, written Rgg’“”(S),
is the number of bits transmitted in the worst case by the best public coin protocol which allows
P to learnz with an error probability bounded byfor every pair(z, y) € S. We write R:7"**(S)

when the number of rounds is bounded Ay
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E. Worst-Case Amortized Models

For several models of computation including interactive communication, the simultaneous
resolution of several independent instances of a problem can be more efficient than the sequen-
tial resolution of the instances. This phenomenon is namedliteet-sum problemand was
introduced by Karchmer, Raz, and Wigderson [15] for communication complexity of relations
as a promising approach to separate the complexity claggesand N'C? [16].

Let S C X xY be an interactive communication problem, and(at v, ), (x2,y2), - - ., (21, y1)
be ! independent instances 6f Px knows (z1, z, ..., x;), Py KNnows (y1,ya,...,y), and the
goal is for Py to learn all thex; from P, while minimizing the worst-case communication.

We write C.(S") for the simultaneous worst-case deterministic complesity instances of a
support setS, and theworst-case deterministic amortized complexfyS, written AOO(S), is
a complexity measure representing the average communication per instance and given by the

expression

We write C,(S') and A, (S) when the number of rounds is bounded/yClearly, C.(S') < I-
Co(S) and A (S) < C(S). Deterministic amortized complexity for interactive communication
has been studied by Naor, Orlitsky and Shor [14] and Alon and Orlitsky [17]. In the former
paper, it is proven that the deterministic amortized complexity is equal to the complexity when
Py knowsy in advance and that at most four rounds of communication are required to achieve
the optimal solution. Ahlswede, Cai and Zhang [13] have subsequently reduced the number of
rounds to three.

Result 7:

A3(8) = Au(8) = - = Axe(5) = C*(S) = logay.

Example 8:We want to solve the league problem for two seasons, assuming that the results
are independen#?, wants to learn the identity of the two champion teams flBm who knows
the two pairs of finalists. Obviously, if both seasons are solved independ2fitlyg n| + 1)
communication bits are required. However, by treating the two seasons as one larger problem,
it can be shown [18] thaf,(S?) < [logn] + 6. When the number of teams in the league is
large, solving one or two instances requires roughly the same number of communication bits.

Moreover, Result |7 implies that the deterministic amortized complexity of the league problem

March 6, 2006 DRAFT



10

is 1 bit per instance.

This paper examines the simultaneous resolution of several instances of interactive commu-
nication problems using nonzero-error randomized protocBis:and Py, are allowed to toss
private coins, and®y must learn(z;, xo, ..., x;) correctly with probability at least — e. We
write R¢_(S') for the simultaneous worst-case private coin randomized complexitynstances
of a support sefS, and theworst-case private coin randomized amortized complexity' is
given by the expression

A(5) £ Jim SRE(S"). &)

Again, we write k¢ (S') and A¢(S) when the number of rounds is bounded hy

F. Worst-Case Distributional Model

In all the complexity models defined so far, any interactive communication problem is com-
pletely described by its support sét In effect, since we consider the communication in the
worst case for all the possible input paits, y), the probability distribution over the inputs is
irrelevant.

In our last nonzero-error model, we allow deterministic protocols to fail with probability 1 for
some pairgz,y) € S as long as they are correct for most of the inputs. Ldte a probability
distribution overS. Theworst-case(y, €)-distributional complexityof S, written D#<(S), is the
number of bits transmitted in the worst case by the best deterministic protocol that @lows
to learnz for a fraction at least — e of the inputs(z,y) € S, weighted byu. It is assumed
that the players use a agreed-upon protocol based. on

The only model previously studied in the context of interactive communication and considering
a probability distribution over the inputs it the zero-error average-case deterministic model. It
has been studied by Orlitsky [19] and Alon and Orlitsky [2B]. wants to learn: with certainty
using a deterministic protocol and the goal is to minimize the expected number of bits that need

to be transmitted.
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[11. PRIVATE COIN RANDOMIZED INTERACTIVE COMMUNICATION: ONE ROUND OF

COMMUNICATION IS ALMOST OPTIMAL

In this section, we study worst-case private coin randomized interactive communication. We

show that a single round of communication is almost optimal, more precisely that
R{(S) < 4R5,(S) + o( B, (5)).

Again, as mentioned in the introduction, this is quite different from worst-case deterministic
interactive communication and even from worst-case randomized communication complexity of
boolean functions.

Notice first that a randomized protocol can simulate a deterministic protocol by ignoring the

output of the random generators, thus
R (S) < CoolS). (2)

A first lower bound, Lemma|9, shows that for any support set, the difference between private
coin randomized complexity and one-way deterministic complexity is at most exponential.

Lemma 9:

RE_(S) € Q(log C1(9)).
Proof:

The proof is similar to that of Lemma 3.8 by Kushilevitz and Nisan [3], but for interactive
communication problems instead of boolean functions. Before proving the result, a few prelim-
inary notions are needed. A randomized protoBofor a support sefS can be represented by

a binary tree. All the internal nodes of the tree are labeled by functions
fX,N + X X {0, 1}* — {0, ]_}

or
fy7N 1Y x {O, 1}* — {0, 1},

and all its leaves are labeled by functions
fy7L 1Y x {0,1}* — X.

During the execution ofP on input (x,y) with random strings -y andry, the players travel

down the tree following the values gfy y and fy y. When a node is labeled by a function
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fxn, Pxr computesfy y(z,7x); if fx nv(z,7x) =0, the next node is the left sibling of node,

and if fy y(z,7x) = 1, the protocol continues with the right sibling. Sinfg does not know

x nor ry, Py must tell him which sibling to choose by transmitting him a bit. When a node is

labeled by a functioryy v (y,ry), Py executes the same process. The output of the protocol is
the valuefy ;(y,ry) € X of the leaf reached at the end of the execution, and the worst-case
cost of P is the height of the tree.

We now prove the lemma. Given a randomized protocolSfowe transform it into a one-way
deterministic protocol. For each leafof the protocol treePy sendspy 1, to Py, the probability
over the choices of ¢ to reach leafl. on inputz, skipping all the nodes labeled by the functions
fy,n. Each real number is sent usipg= —log (3 —¢) + R¢_(S) bits, which means that the
difference between the exact probability and its rounded value is at 2ndst

Py then compute®;, = px,1. - py,., the probability over the choices of, andry to reach
leaf L. Furthermore, using the functions ; : Y x {0,1}* — X, P}, computes for each leaf
the probability to output;, for everyz; € a(y)* Adding the results for all the leaves, he also
computes the probability over the choicesrqf andry that P outputsz;, for everyz; € a(y).
Since’P computesS with error at most, there is a single; = x which is output with probability

at leastl — ¢. The total rounding error is smaller than

9R%(S) . 9P — 9RS(S) , 9 log(5—€)+R5(S)

1
= = —¢

2
because the tree has at maét-(%) leaves and because only the information senPhyhas to
be rounded. Even with the rounding error, the probability computedpyor x;, = = is more
than 3, henceP), concludes with certainty that the only € a(y) with probability greater than
% IS x.
The communication complexity of the protocol is

) - 1 -

C1(S) < 2R(5). (log (5 — e> + R;O(S)) :
thus

Re(S) > log C1(S) — log RS, (S) — c(e). (3)
'Recall thata(y) is the ambiguity set of.
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The result follows.
u
Lemma|9 can be used to show that when the difference between one-way and two-way
deterministic complexity is exponential, the deterministic and private coin randomized models
are equivalent.
Corollary 10: If Coo(S) ~2log C1(S), then

Coo(S) ~ R (S).

If Coo(S) € ©(log C1(S)), then
Coo(S) € O(R(5)).
Proof: Combining (2) and|(3), we get

log C1(S) —log Coo(S) — c(€) < RE(S) < Coo(S).
If Coo(S) ~ log C1(S), then asymptotically,
Coo(S) = log Ce(S) — (€) < RE(S) < Ce(S),

thus C(S) ~ R (S). The second case is proved in a similar way. m
Example 11:Recall that for the league problem presented in Exampi&,d(L) = [logn]+1
andC (L) = n. Using Corollary 10, it follows thak¢_(L) ~ log n; the worst-case deterministic
and private coin randomized models are thus equivalent for this problem.
Lemma 9 can also be used to show that the worst-case deterministic and private coin random-
ized are equivalent whef),’s ambiguity is constant.
Corollary 12: If ay € O(1), then

Cao(8) ~ B5(S).
Proof: From (2) and|(B), it follows that

log C1(S) — log RS, (S) — cle) < RE(S) < Cu().

Moreover,
Coo(S) < loglog x + O(1) < log C1(S) + O(1)

2f(n) ~ g(n) if and only if lim {0 =1

o 9(n)
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from the assumption and Results 4 and 5, thus

~

Coe(S) = log RS, (S) — O(1) < R,(S) < Cu(S).

[ |
The next lemma tightens the bound from Lemma 9 for problems with small discrepancy
betweenC;(S) and O (S).
Lemma 13:

~ - 1
R:(S) 210gay—10g1 )
—€

Proof: Suppose thaf®_(S) < logay — log . By definition, there exists a protoc®

for S requiring less thanogay — 10%1%6 bits of communication and such that for every pair
(x,y) € S, the probability thatP), does not learn: correctly is at most.

Let y € Y be an input such that(y)| = ay. For every choice of the random strings and
ry, less than(1 — ¢) - ay distinct messages can be transmitted and it follows that the protocol
makes an error for more than ay, of the z; € a(y). By a simple counting argument, there is
at least one element € a(y) such that the error probability g on the input pair(z', y) is
more thane, which is a contradiction. [ ]
The previous bound is very weak for problems for which the difference between one-way and
two-way worst-case deterministic complexity is large. For the league prohlgms 2 and
Lemmal 13 givesi‘_ (L) > 1. On the other hand, for balanced and symmetric pairs, it will be
shown in Section VI|I that the bound is tight. In fact, the two lower bounds presented in this
section are asymptotically equal to Results 3 @and 4 for deterministic protocols. The next lemma
gives a strong upper bound on the private coin randomized complexity.

Lemma 14:

R(S) <2 [loglogx + logay + log (1 — 1) + 1-‘ .
Proof: Let G5 be the characteristic hypergraph ©f ;nd letz be Py’s input. Recall that

Py has an inpuy defining the ambiguity set (hyperedggy) = {z1,...,z;} and wants to learn
which of thex; is z. Let k = [log x] — 1. Players agree on a proper colorifigof Gs with y
colors. We write the color of the verticesof G5 in binary: U, = sys, ... s, Wheres; € {0,1}.

We consider these strings as polynomial<Ziny wherep is a prime number such that

F;e.k.(@_l)J <p§2l¥-k-(@—1)J-
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Bertrand’s postulate [21] guarantees the existence of sycHraother words, for a vertex of
Gs whose color isU,, W, (t) = (sq + 51t + - - - + st*)(mod p).

Py randomly chooses: € Z, and sendsn and ¥ ,(m) to Py. Py then constructs the set
En =A{x; |z € aly) ANV, (m) =¥, (m)},

randomly chooses an element Bf, and concludes that it i¥y’s input.

In order to show that the protocol works, we have to prove that the probability #hat
answersz is at leastl — e. First, remark thatr € E,,, therefore|E,,| > 1 and P, can only
answer incorrectly whenk,,| > 2. Thus, we get

Pr[Py answerss] = ) Pr[Py randomly chooseg € Z, A Py guesses correctly]
JEZy
p—1

- = Z Pr[Py answerse | j is chosen]

<
(=)

-1

3

1

|E;|

"

<
Il
o

Furthermore, sinc& is a proper coloring of7, all the vertices of the hyperedggy) have
a different color, thus the corresponding polynomidigt) are different. It implies that two
such polynomials can be equal for at mastield elements because their difference, a nonzero

polynomial of degree at mogt, has at most roots. Hence, we can deduce that

p—1
|Ej] < k- (ay — 1) +p,
§=0
which implies that
p—1 1
> p ;
— |E;| ~ (k.@q)w)
Jj=0 P
and thus
1
Pr[Py answerS%‘] > CE
p + 1
S 1
= T k(@D
Flay-1r= T
B 1 B 1
=+l ()
= 1—c¢
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Finally, the complexity of the protocol is
Ri(S) < 2[logp]
1 —
< 2 [1 + log <— - 1) +loglogx+logay—‘ .
€
[ |
Using Lemma 14 with the league problem, we @&{L) < 2[logn] + c(¢). More generally,
the lemma can be used to prove that the one-way private coin randomized complexity is at most
four times larger than the worst-case deterministic complexity.
Corollary 15:
R A 1
R{(S) <4C(S) + [2 log ——‘ .
€

Proof: Using Lemma 14 and Results 3 and 4, we get
1 R R
Ri(S) < 2 [1 + log (— — 1) +log C1(S) + COO(S)-‘
€
1 . .
< 2 [1 + log (— - 1) +Cx(S) — 1+ C'OO(S)—‘
€

< 4C(S) +2 [log 1} .
€

u
Combining Lemma 14 with the two lower bounds proved in this section, we can conclude that

one round of communication is almost optimal for worst-case private coin randomized protocols.

Corollary 16:
R{(S) < AR5, (S) + o(R5(5)).

Proof: From Result 4 and Lemmas [9,/13 &nd 14 it follows that

Ei(5S)

A

21og C1(S) + 2log @y + ¢4 (€)

IN

AR (S) + 2log RE_(S) + c2(e)

IN

ARS_(S) 4 o( R (9)).
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IV. PuBLIC COIN RANDOMIZED INTERACTIVE COMMUNICATION

In this section, we characterize worst-case public coin randomized interactive communication.
Firstly, we prove that one round of communication is optimal for this model; the complexity
corresponds to the amortized complexity and to the communication required Rh&nows
y in advance. Secondly, we give an upper bound on the difference between the private coin
and public coin randomized models and use it to improve the upper bounds on the one-way
private coin complexity derived in the previous section. Notice first that the players can use the
concatenation of the private stringg andry as a public random string, thus the public coin

randomized model is at least as powerful as the private coin randomized model, i.e.,

RP(S) < RY(S).

A. One Round of Communication is Optimal

Lemma 17:

_ . . . 1—
l0g T — Iog . < R(S) < RP(S) < [log(a )] + [l .
€

— €
Proof:

Lemmal 13 can be applied with a public random generator for the lower bound. For the upper
bound, recall thaP» has an input: and Py, has an inpuy defining the ambiguity set (hyperedge
of the characteristic hypergraphjy) = {x1,...,2;} = {z | (x,y) € S}. It is assumed that the
elements ofX are coded usinglog | X|] bits. Py choosest random subsets of the bits of his
input x and, for each of these subsets, sends the parity of the bits.t¢’, then computes the
k corresponding parities for each of the inputse a(y). Each time a parity differs from the
corresponding result sent Yy, Py deduces that; # x and discards it. Wher, has done
all the comparisons, he randomly chooses an input among those which have not been discarded
and concludes that it i®+’s input.

The probability of not discarding a vertex is 1 if x; = x and 2% otherwise. LetZ be a
random variable representing the number of inputs not discarded/aiterations. Since there

area(y) — 1 inputs to discard, it follows that
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The probability thatPy, learnsPx’s input correctly isE [%} and Jensen’s inequality gives

1
> — — .
T E[Z] 1+ %@ -1

Pr[Py answersr]

By letting & = [log(ay — 1)] + [log 1=¢], it follows that
1
3 @y — 1)
2“08(@—1)14’- lrlog 16;5—‘ Yy
1
14+ £

Pr[success] >

v

= 1—c¢,

from which we conclude that

— 1-
Rl (8) < k= [og(@ — 1] + | log .
[
Example 18:If we apply Lemma 17 to the league problem, we @i@f“b(L) < ﬂog %} €
©(1). It shows that one-way public coin randomized complexity can be arbitrarily better than

one-way deterministic complexity.

B. Difference Between the Private Coin and Public Coin Models

Private coin randomized complexity cannot be much worse than public coin randomized
complexity: every public randomized protocol can be transformed into a private randomized
protocol whose error probability is slightly larger, and which uses a few more communication
bits. It is inspired by a similar result for boolean functions shown by Newman [22].

Theorem 19:For all § > 0 and for alle > 0 such thate + ¢ < 1,

REY(S) < REPU(S) + loglog | S| + log 5% +1.
Proof: Let P be a public coin randomized protocol fof whose error is bounded by
e and requiringRgg’“”(S) communication bits. We suppose the random generatmilows a
probability distributionu. Let Z(x,y,r) be a random variable equal to 1 if the answer given by
Py, following the execution ofP on input(x,y) is incorrect (different fromr), and equal to O
if correct. SinceP solvesS with error at most, it follows that T]gu[Z(:r,y,r)] < e for every

pair (x,y) € S.
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A new protocol forS using less random bits is designed. ltebe a parameter to be fixed
later, and letr;, r,...,, be binary strings. The protoc®,, ., ., is defined as followsPy
and Py randomly choose between 1 and and run protocof with the common random string
.

We now show that there exists strings, o, ..., such thatE[Z(x,y,r;)] < e + 6 for
every pair(z,y) € S. We choose the stringsry,rq,...,r; randzomly following the proba-
bility distribution 1, consider an arbitrary paifz,y) € S and compute the probability that
E[Z(x,y,r;)] > €+ ¢ (wherei is uniformly distributed). This is equivalent to the probability
tlhat S Z(x,y, i) > e+ 6. Sincergu[Z(x, y,7)] < ¢, Chernoff bound yields

.....

By choosingt = [bgm, it follows that
9e—20%t  _ 267262[71"%5'1

267210g |S|

IN

- 9. 2—210gelog\5\

— Q‘SrQloge
< 1 when|S| > 1.
5]
Thus, for a random choice of, .. . , r;, the probability that there exists at least a gairy) € S

(there ardS| such pairs) such thd?[Z(z, y, 1)) > e+dis smallertha¢5|-ﬁ = 1. Consequently,
there exists a choice of;,...,r; such that for every paitz,y) € S, the error of protocol
Pri o, 1S @t Moste + 0. The number of random bits used BY, ., ..., iS [logt], and in order
to transform the public protocol into a private protocBl; has to randomly choosebetween 1
andt and to send it taPy,. Moreover, from Lemma 17, there exists an optimal one-round public

coin randomized protocol fof ensuring thatP, is also a one-way protocol. Hence,

RE(S) < RY™(S) + [logt]
NEPU 1Og S
R{" b(S) + lrlog [ 52| |H

. 1
RY™(S) + loglog S| + logﬁ + 1.

IN

IA
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u
Example 20:The previous theorem is applied to the league problem, for wifich= (2") -
(2" — 1). This gives

., . 1
REY(L) < RP™(S) +loglog|S| +log — + 1

52
< loglog|2™(2™ — 1)| + ¢(€', §),

thus R (L) < logn + c(¢). There exists an optimal one-way private coin randomized protocol
for this problem; it improves the bound given by Lemima 14, which is not optimal, and the
result from Example 11, which does not limit interaction between the players. This example
also proves that the bound given by Theorem 19 can be reached.

Theorem| 19 can also be used to tighten the upper bounds on the one-way private coin
randomized complexity presented in Section Ill.

Corollary 21: For all § > 0 and for alle > 0 such thate + § < 1,

1—c¢

Ri74(5) < Tog(@ — 1)] + og o + g
Corollary 22:

1
-‘+10g§+1.

RS(S) < loglogo + logay + loglogay + c(e).

Proof: Recall thato is the number of hyperedges in the characteristic hypergtaph
Suppose that for each € Y corresponds a different hyperedge; if is not the case, the players
agree on an equivalent support $étC X' xY’, S’ C S, such that for each € Y’ corresponds a
distinct hyperedge. It follows thas’| < |V'|-ay' < o-ay, and the result follows from Theorem
19 and Lemma 17. [ |

If X =Y = {0,1}", the difference between the private and public coin randomized models
is at most an additive term dbgn + O(1) bits. Using Result |5, the same thing can be said
about the difference between the deterministic and public coin randomized models. In fact, the
similarity between Result|5 and Corollary|22 is striking considering how different the models
and the proofs are.

Corollary 23:

R{(S) <3R5, (S) + o( RS, (9)).

Proof: Since the hypergraptis can be colored withy colors, there exists a support set

ay _

S’ equivalent toS having at most) (%) < x* distinct hyperedges. The result follows from
i=1

Corollary|22 and Lemmas 9 and|13. [ |

March 6, 2006 DRAFT



21

Corollary 24

RE(S) < 3C(S) + 0(Cs(9)).
V. PRIVATE COIN RANDOMIZED AMORTIZED INTERACTIVE COMMUNICATION: ONE

ROUND OF COMMUNICATION IS OPTIMAL

In this section, we show that one round of communication is optimal for the private coin
randomized amortized model; the complexity is equal to the number of bits that need to be
transmitted whenP, knows y in advance. This is an improvement over the deterministic
amortized model, for which interaction is required in order to minimize the communication.

Lemma 25:

A5(8) = A5(8) = -+ = A (5) = log .
Proof:

A mentioned in Section [Il] independent instances of a support §etC X x Y can be
treated as a larger support ¢t Let G& be the characteristic hypergraph $/f It is not hard to
show that the vertices daf are the elements ok!, and that for eacl+tuple (e, ey, .. ., ¢;) of
hyperedges of7s, e, x e, X - -+ x ¢; is a hyperedge of+%. Clearly, the maximum ambiguity of
Py, for the support sef' is ay', and the number of different hyperedges(f is o. It follows

from Lemma 18 that

- o~ 1
R (SY > l-logay—log1 ,
—€
and Corollary 22 gives
RE(S) < loglogo + 1 -logay + loglogay + 2logl + c(e).

The result follows from the definition afi¢(S) and A¢_(S) given by Eq. |(1). u

Lemma 25 shows that when several instances are solved simultaneously instead of sequentially,
there is no advantage to use a public coin over private coins since no interaction is required and
the amount communication is the same. Also, comparing Lemma 25 and Corollary 21 when
|S| € O(2°") (this includes the support setsC {0,1}" x {0, 1}"), the difference between the
private coin randomized complexity and the private coin randomized amortized complexity is at
most an additive term dbgn+ O(1) bits. The bound is tight for the league problem. The same
discrepancy between the deterministic complexity and the deterministic amortized complexity is
implicit in the work of Naor, Orlitsky and Shor [14] using Resulis 5 and 7.
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VI. DISTRIBUTIONAL INTERACTIVE COMMUNICATION: ONE ROUND OF COMMUNICATION

IS OPTIMAL

In this section, we study worst-case distributional complexity, starting with yet another example
using the league problem.

Example 26:Suppose that the support setffollows a uniform distribution, and without loss
of generality, that:, the length of the team names, is an even intefgersends two bits taPy :
the parity of the first; bits of the champion’s name, followed by the parity of the kaddits. P,
computes the equivalent parities for the two teams playing for the championship and compares
the results with the bits received frof. The protocol will err for the pairs of finalist teams
with identical parity bits, and there afé| - (1 — L) such pairs. HencqufmeTm’%(S) < 2.

It should be noted that for every interactive communication problem and fer>al), there
exists a probability distribution over the inputs for which the distributional complexity is O,
for example if there is an input pair occurring with probability at lebst e. Consequently, it
is interesting to consider probability distributions maximizing the number of bits that need to
be transmitted, and even in this case communication can be more efficient than when no error
is allowed. The main result of this section is that the distributional complexity with the worst
possible probability distribution over the inputs is equal to the public coin randomized complexity.
Again, it is equivalent to the complexity whdp, knowsy in advance. This is hardly a surprise,
since the equivalence between the randomized and distributional models was first established by
Yao [23] for computational complexity using von-Neumann’s Minimax Theorem of game theory
[24]. The equality is also verified for communication complexity of boolean functions (see, for
example, [3]), and the proof can be applied without modification to partial dongainsY x Y.
We present a simpler proof tailored for interactive communication problems and improving the
original proof in two ways. Firstly, a family of asymptotically "worst” probability distributions
over the inputs is described. The distributions can be used with any interactive communication
problem and probability of error. Secondly, an optimal protocol requiring a single round of
communication is constructed.

Lemma 27:

log ay — log

. R e 1—
< max D"(S) < max D“(S) < [log(ay — 1)] + |log —— | .
1— 2¢ J jz €
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Proof: Let S C X xY be an interactive communication problem. To prove the lower bound,

the following probability distributiory/ over S is used: there is @' € Y with |a(y')| = @7,
and Pf(z,y) = (z;,¢')] = % for everyx; € a(y). The probability of all the other input pairs
(z,y) € S can be any nonzero value.

Suppose thaﬁgf(S) < logay — log 1%26 and letP? be an optimal protocol fof. For any
pair (z,y) € S, less thanay - (1 — 2¢) distinct messages can be exchanged betweerand
Py. It follows that whenP), has the input/, the protocol fails on more thae - ay, input pairs
(x;,y'), each pair occurring with probabilitz%. Hence,P fails with probability more thar

over S, which is a contradiction, and

log ay — log T

< DI(S) < mas DLX(S).

To prove the upper bound, the public coin protocol presented in Lemma 17 is used. Recall
that by receiving the parity of = [log(ay — 1)] + [log -=<] random subsets of the bits of
from Py, Py can learnxz with probability at leastl — e for every valid input pair. Since the
protocol works for any probability distribution over the inputs, it succeeds with probability at
leastl — e when the probability distribution is taken over the inputs and the choice of the subsets.
By a simple counting argument, it follows that there existsubsets of the bits of for which
the protocol succeeds for at least a fractior ¢ of the inputs weighted by their probability
distribution.

The protocol from Lemma 17 is derandomized as follows: for a fixe@ind a fixede, Py
and Py, agree onk subsets for which the protocol fails on at most a fractoof S weighted
by n. Py sends the parity of thé subsets ofr to P, who compares the received bits with
the & corresponding parities for each of the inputsc a(y). If more than one of the; is not
discarded,P), chooses the one whose input probability givers the highest. The complexity

of the protocol is

. . - 1—
max D"*(S) < Ri"™(S) < k < [log(ay — 1)] + Pog ﬂ '
s €

u
The family of "worst” probability distributions presented in the previous proof is not unique.

For example, when the ambiguity of every input Y is maximal, i.e.,|la(y)| = ay, it is not

3Such ay’ always exists.
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hard to show that the uniform distribution also maximizes the required number of communication
bits. The league problem is an example of such a supporPsetlways picks the winner among

two teams.

VIl. EQUIVALENCE OF ALL THE MODELS FORBALANCED AND SYMMETRIC PAIRS

All the worst-case complexity models introduced in this paper require asymptotically at least
logay bits of communication, and with the exception of the deterministic and private coin
randomized models, asymptoticallygay, bits suffice. For some support sets like the league
problem, the difference betweésg ay andém(S) is large, but for other problems, the amortized
or nonzero-error models cannot be used to reduce the number of communication bits. Consider
the following modification of the league problem: eithBy knows the two teams playing for
the league championship, or he doesn’'t know anything. It is obvious that in the worst case,
whether it is the worst input of the worst probability distribution over the inpBtshas to send
asymptotically all the bits of the champion’s nameHg and he can do so in a single round
of communication. For the problems mentioned in the next lemma, all the worst-case models
presented in this paper are asymptotically equivalent and inefficient: randomization, nonzero-error
protocols, solving several instances simultaneously, knowingadvance and even interaction
cannot significantly reduce the communication betwé&gnand P),.

Lemma 28:If there is ay € Y with |a(y)| = ay = | X|, or if S is a Cartesian-product support
set, then

Ci(S) = Nogay] -

Proof: Result 3 gives a lower bound ¢fogay]|. If ay = |X]|, then Px has to describe
completely; he can do so usifdgog |X|] = [logay] bits. If S is a Cartesian-product support
set, then there exist§’ € X andY” € Y such thatS = X’ x Y. Again,ay = |X’'| and Py can
describer with [log|X’|] = [logay] bits of communication. u

It is also possible to prove that all the worst-case complexity models are equivalent for balanced
and symmetric pairs. Recall that a support Sets balanced ifay = ay and symmetric if
(z,y) € Sif and only if (y,x) € S.

Theorem 29:Let S be a balanced support set, anddet ¢ < 1. The deterministic, amortized
deterministic, deterministic wheR, knows Py’'s input, private coin randomized, public coin

randomized, distributional and private coin randomized amortized models are equivalent. More
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precisely,

C(S) < Cs(S) < C(8) +o(C(S)); (4)

CH(S) 1< Ay(8) < C*(S); (5)
C*(S)—0(1) < R5(S) < C*(9) +o(C*(9)); (6)
C*(S) —0(1) < R™(S) < C*(S)+0(1); (7)
C*(S)—0(1) < DP(S) < C*(S) +0(1); ®)
CH(S)—1<  Ay(S) < C(S). ©)

Proof: Inequality (4) can be deduced from Results 3 ahd 6; Inequality (5) from Résults 3
and| 7; Inequality|(6) from Results 3 and 6, Inequality (2) and Lermma 13; Inequality (7) from
Result 3 and Lemma 17; Inequality (8) from Result 3 and Lemma 27; Inequality (9) from Result
3 and Lemma 25. ]

Unfortunately, Theorem 29 means that nonzero-error algorithms cannot significantly reduce
the communication for all the practical applications mentioned in the introduction. This is a
somewhat “negative” result, but only because deterministic protocols are already very efficient.
Nevertheless, nonzero-error models, even the private coin randomized model, allow efficient one-
way protocols. For most practical applications of symmetric pairs, the ambiguity of the players
increases at least polynomially with the size of the inputs; in this case there exists a private
coin randomized protocol using a single round of communication and whose communication
complexity is almost optimal. If the ambiguity of the players increases superpolynomially with
the size of the inputs, then the best one-round private coin randomized protocol is optimal.

Lemma 30:Let S be a balanced support set with= {0,1}", and let0 < e < 1 andk > 1.

If ay € ©(n*), then

C*(S) — 0(1) < BE(S) < (1 + %) L CH(S) + o(CH(S)).
If k€ w(n®) forall k> 1, then

C*(S) = O(1) < R{(S) < C*(S) + o(C*(5)).

Proof: The lower bound comes from Lemral 13. For the upper bound, Corollary 21 gives
R{(S) < logay + loglog|S| + c(e)

< logay + loglog(|X] - ay) + O(1),
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and if ay € O(nk) it follows that

R{(S) < (k+1)logn+ o(logn)

k+1
< % -logn® + o(log n).
The casek € w(n*) for all k£ > 1 is proved similarly. [

Example 31:A large databas® on a PC has to be synchronized with an updated verBion
of the database stored on a PDA. The problem can be viewedetseconciliatiorproblem [25],
and for this example we assume thiatand D’ are sets of integers ifi, 10°], that D’ has to be
conveyed to the PC, and thBxand D’ differ for at most 1000 entries, i.6.D\ D’|+ | D'\ D| <
1000. Translated in the interactive communication framewadbkand D’ can be expressed as
binary stringsz andy such thatz; =1 (y; = 1) if and only if i € D (i € D’). The correlation
betweenD and D’ gives an upper bound on the Hamming distance betweandy, thus the
support set is symmetric andy = ay = %0:0 (100(2000)_

From Result 6, we know there existézg 3-round deterministic algorithm requiring 11452 bits
of communication. Nonzero-error algorithms cannot do much better: from Lemma 13, even with
a public random string, at least 11401 bits have to be exchanged in ordéy torlearnz with
error at mosk, for 0 < e < % From Lemma 17, there exists a one-way public coin randomized
protocol transmitting 11452 bits with 27°° probability of error, and a one-way private coin
randomized protocol transmitting 11576 bits witR @° probability of error from Corollary 21.

The results just stated assume thig¢ and P, have unbounded memory and computing
power. For several classes of symmetric support sets, a lot research has been done to design
algorithms with reasonable tradeoffs between the number of rounds, communication complexity,
computational complexity and storage space. Of course, the requirements vary widely depending

on the application and the size of the maximum ambiguity of the players.

VIIl. O PENPROBLEMS

In this paper, we have studied worst-case nonzero-error interactive communication. We have
shown that if the players are allowed to use public coins, to answer correctly on a fraction of the
inputs or to solve a large number of instances simultaneously, then interaction is not necessary

and in some cases the communication can be significantly reduced. Although we have proved that
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one round of communication is almost optimal, we have not been able to completely characterize

the private coin randomized model, and in this section we discuss two open problems.

A. One-Way Private Coin Randomized Complexity

Is one round of communication optimal for private coin randomized complexity? If not, is

there ak such that an optimat-round protocol always exists, i.e.,kasuch that
Ri(S) < Ro(S) + o5 (9))?

The lower bounds for private coin randomized complexity presented earlier do not restrict the
number of rounds betwedn, and P),. Moreover, it is not clear if existing techniques for proving
lower bounds for other models of computation like communication complexity of non-boolean
functions can be used to derive stronger lower bounds in the interactive communication setting.
As for upper bounds, although it is not obvious how randomized protocols can use interaction
to reduce the the number of bits that need to be transmitted, our best upper bound, Theorem 19,

is not always tight.

B. Deterministic Model Versus Private Coin Randomized Model

The private coin randomized model allows almost optimal one-way protocols, but it does not
seem that it can be more efficient than determinism when interaction is allowed. In fact, we
conjecture that the worst-case deterministic and worst-case private coin randomized models are
equivalent, i.e.,

~

RE(S) ~ Cu(S).
In Section II}, we have shown that the models are equivalent whés maximum ambiguity
is constant. This includes all the maximally unbalanced pairs like the league problem, i.e, pairs
with ay € O(1) anday € Q(]X]|). In Section| VI], it has been proved that the models are
equivalent for balanced and symmetric support sets. Thus, in order to solve the conjecture, one
needs to study problems for which the private coin randomized complexity is not tightly bounded

by Lemmas P and 13, i.e., problems that are neither balanced nor too unbalanced.
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