
Pseudo-Signatures, Broadcast, and Multi-Party
Computation from Correlated Randomness

Matthias Fitzi 1 Stefan Wolf 2 Jürg Wullschleger 2

1 Department of Computer Science
University of California, Davis, U.S.A.

fitzi@cs.ucdavis.edu
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Abstract. Unconditionally secure multi-party computations in general,
and broadcast in particular, are impossible if any third of the players can
be actively corrupted and if no additional information-theoretic primitive
is given. In this paper, we relativize this pessimistic result by showing
that such a primitive can be as simple as noisy communication channels
between the players or weakly correlated pieces of information. We con-
sider the scenario where three players have access to random variables
X, Y , and Z, respectively, and give the exact condition on the joint dis-
tribution PXY Z under which unconditional broadcast is possible. More
precisely, we show that this condition characterizes the possibility of real-
izing so-called pseudo-signatures between the players. As a consequence
of our results, we can give conditions for the possibility of achieving un-
conditional broadcast between n players and any minority of cheaters
and, hence, general multi-party computation under the same condition.

Key words. Unconditional security, pseudo-signatures, broadcast, multi-
party computation, information theory.

1 Motivation and Preliminaries

1.1 Introduction

Digital signatures [11, 19] are a powerful tool not only in the context of digital
contract signing, but also as a basic primitive for cryptographic protocols such
as electronic voting or secure multi-party computation. Much less known are
so-called pseudo-signature schemes, which guarantee unconditional security—in
contrast to classical digital-signature schemes. The inherent price for their higher
security, however, is the signatures’ limited transferability: Whereas classical
signatures can be arbitrarily transfered without losing conclusiveness, pseudo-
signatures only remain secure for a fixed number λ—the transferability—of trans-
fers among different parties. Since the necessary number of signature transfers
in a protocol is typically bounded by the number of involved parties, pseudo-
signatures are, nevertheless, useful and offer a provably higher security level than



traditional signature schemes. For example, the authenticated broadcast proto-
col in [13] can be based on pseudo-signatures and then guarantees unconditional
(instead of computational) security against any number of corrupted players [25].

A pseudo-signature scheme among a number of players can either be set up
by a mutually trusted party, by a protocol among the players when given global
broadcast channels, or—as we will show—by exploiting an information source
that provides the players with certain correlated pieces of information—a similar
model has been considered in [21] in the context of secret-key agreement.

In this paper, we consider the general case of an information source that pro-
vides a set of n players with pieces of information distributed according to some
given joint probability distribution. For the case of three players, we completely
characterize when such an information source allows for setting up a pseudo-
signature scheme. This result can be used for deriving a complete characteriza-
tion of when unconditionally secure three-party computation—or broadcast, in
particular—is achievable in the presence of an actively corrupted player. Fur-
thermore, we give, in the same model, a sufficient condition for the achievability
of unconditionally secure multi-party computation for any number n of players
secure against t < n/2 actively corrupted players.

1.2 Context and Previous Work

Pseudo-signature schemes (PSS). The first pseudo-signature-like scheme was
given in form of an information-checking protocol among three players [26]. In
contrast to real pseudo-signatures, however, the signer is required to commit to
her input value already during the setup of the scheme.

The first PSS was introduced in [7] with the restriction to be secure only
with respect to a correct signer. In [25], finally, a complete PSS was proposed
for any transferability λ and any number of corrupted players.

Setting up a PSS. It was shown in [25] how to set up a PSS using global broadcast
channels, where the dining-cryptographers protocol [5, 4] was used. Obtaining a
PSS from a common random source was considered in [15, 16], but only with
respect to three players and one particular probability distribution.

Broadcast. The broadcast problem was introduced in [20]. It was proven that,
in the standard model with secure channels between all pairs of players, but
without the use of a signature scheme, broadcast is achievable if and only if
the number t of cheaters satisfies t < n/3. Furthermore, it was shown that
when additionally a signature scheme is given among the n players, then com-
putationally secure broadcast is achievable for any number of corrupted players.
The first efficient such protocol was given in [12]. In [25], an efficient protocol
was given with unconditional security based on a pseudo-signature scheme with
transferability t + 1.
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Multi-party computation (MPC). Broadcast—or the availability of signatures
with sufficiently high transferability—is a limiting factor for general multi-party
computation introduced in [27]. A complete solution with respect to computa-
tional security was given in [18]. In [2, 6], it was shown that in a model with
only pairwise secure channels, MPC unconditionally secure against an active
adversary is achievable if and only if t < n/3 players are corrupted. As shown
in [1, 26], t < n/2 is achievable when global broadcast channels are additionally
given—and this bound was shown tight. A protocol more efficient than those
in [1, 26] was given in [10].

1.3 Our Results

We first consider a set of three players, connected in pairs by secure channels,
where an additional information source provides the players with correlated
pieces of information. We give a necessary and sufficient condition on the joint
probability distribution of this side information for when a pseudo-signature
scheme can be set up among the three players with a designated signer. Fur-
thermore, we show that the tight condition for the achievability of broadcast or
multi-party computation among three players unconditionally secure against one
actively corrupted player is exactly the same as the one for a pseudo-signature
scheme with respect to an arbitrary. The derived condition shows that pseudo-
signature schemes and broadcast among three players are possible under much
weaker conditions than previously known.

We further consider the general case of n players, connected in pairs by
secure channels, where, again, an additional information source provides the
players with side information. For this model, and under the assumption that
an active adversary can corrupt up to t < n/2 players, we show that MPC is
possible under much weaker conditions than previously known.

1.4 Model and Definitions

We consider a set P = {P1, . . . , Pn} of n players that are connected by a com-
plete, synchronous network of pairwise secure channels—in the presence of an
active adversary who can select up to t players and corrupt them in an arbitrary
way. Furthermore, we assume this adversary to be computationally unbounded.
A player which does not get corrupted by the adversary is called correct.

Pseudo-Signatures. We follow the definition of pseudo-signature schemes as
given in [25].

Definition 1. A pseudo-signature scheme (PSS) with transferability λ among
the players P1, . . . , Pn, where P1 is the signer, satisfies the following properties.

Correctness. If player P1 is correct and signs a message, then a correct player
Pi accepts this message from P1 except with small probability.
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Unforgeability. A correct player Pi rejects any message that has not been signed
by P1 except with small probability.

Transferability. A message signed by the correct player P1 can be transfered λ
times, e.g., via

P1 → Pi1 → · · · → Piλ+1 ,

such that we have for each j ≤ λ and correct players Pij and Pij+1 that if
Pij

accepts a message m, then Pij+1 accepts the same message except with
small probability.

If the path i1, . . . , iλ+1 can be arbitrary, we call the scheme a PSS with arbitrary
transfer paths, if the transfer is restricted to a specific path i1, . . . , iλ+1, we call
it a PSS with transfer path i1, . . . , iλ+1.

The choice λ = 1 will be sufficient in our case since any such PSS allows for
broadcast for t < n/2 corrupted players [17].

Broadcast and Multi-Party Computation. Broadcast is the problem of
having a (possibly corrupted) sender distribute a value to every player such that
all correct players are guaranteed to receive the same value.

Definition 2. A protocol among players P1, . . . , Pn, where P1 is the sender
and holds input xs, and where every player Pi computes an output yi, achieves
broadcast if it satisfies the following conditions.

Validity. If the sender P1 is correct, then every correct player Pi computes the
output yi = xs.

Consistency. All correct players Pi and Pj compute the same output value, i.e.,
yi = yj holds.

Broadcast is a special case of the more general problem of multi-party com-
putation (MPC), where the players want to evaluate in a distributed way some
given function of their inputs and hereby guarantee privacy of these inputs as
well as correctness of the computed result. From a qualitative point of view,
the security of multi-party computation is often broken down to the conditions
privacy, correctness, robustness, and fairness. In [8], it was shown that all these
conditions can only be satisfied simultaneously if t < n/2 holds—the case to
which we restrict our considerations in this paper.

2 Dependent Parts and Simulation of Random Variables

In this section we introduce the notion of the dependent part of a random variable
with respect to another, and a certain simulatability condition, defined for a
triple of random variables. The dependent part of X from Y isolates the part of
X that is dependent on Y . Note that we always assume that the joint distribution
is known to all the players.
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Definition 3. Let X and Y be two random variables, and let f(x) = PY |X=x.
The dependent part of X from Y is defined as X ↘ Y := f(X).

The random variable X ↘ Y is a function of X and takes on the value of the
conditional probability distribution PY |X=x.

Lemma 1. For all X and Y , we have X ←→ (X ↘ Y ) ←→ Y , i.e., the
sequence X, X ↘ Y, Y is a Markov chain3.

Proof. Let K = f(X) = X ↘ Y . For all x ∈ X—the range of X—and k = f(x),
we have PY |X=x,K=k = PY |K=k, and, hence, PY |XK = PY |K .

We will now show that K = X ↘ Y is the part of X that a player who knows
Y can verify to be correct. Lemma 2 shows that every K a player knowing X
can construct that has the same joint distribution with Y as the actual K must
indeed be identical with K. Lemma 3 shows that from K, a random variable X
can be constructed which has the same joint distribution with Y as X. Hence,
K is the largest part of X that someone knowing Y can verify to be correct.

Lemma 2. Let X, K, K, and Y be random variables such that K = X ↘ Y ,
Y ←→ X ←→ K, and PKY = PKY hold. Then we have K = K.

Proof. We have K = f(X), PK|XY = PK|X , PK = PK , and PY |K = PY |K .
Let us have a look at a value k for which PY |K=k cannot be expressed as a
linear combination of PY |X=xi

for xi ∈ X with f(xi) 6= k. (It is easy to see
that such a k must exist.) Let S be the set of all x with f(x) = k. In order to
achieve PY |K=k = PY |K=k, no x′ not in S can be mapped to k by PK|X . Since
PK(k) = PK(k) holds, PK|X must map all values from S to k.

We remove the elements of S from X , repeat the same argument for the next
k, and continue this process until X is empty. Hence, PK|X maps all x to f(x),
and K = K holds. 2

Lemma 3. Let X and Y be random variables, and let K = X ↘ Y . There
exists a channel PX|K—which is equal to PX|K—such that PXY = PXY holds,
where PXY =

∑
k PKY PX|K .

Proof. Using Lemma 1, we get PXY =
∑

k PKY PX|K =
∑

k PKY PX|K = PXY .
2

The simulatability condition, which allows for determining the possibility of
secret-key agreement over unauthenticated channels, was defined in [22] and
further analyzed in [24]. It defines whether given Z, it is possible to simulate X
in such a way that someone who only knows Y cannot distinguish the simulation
of X from the true X.
3 A sequence of three random variables A, B, C forms a Markov chain, denoted by

A←→ B ←→ C, if I(A; C|B) = 0 holds or, equivalently, if we have PC|AB(c, a, b) =
PC|B(c, b) for all (a, b, c) ∈ A× B × C.

5



Definition 4. Let X, Y , and Z be random variables. Then X is simulatable by
Z with respect to Y , denoted by

simY (Z → X),

if there exists a conditional distribution PX|Z such that PXY = PXY holds,
where PXY =

∑
z PY ZPX|Z .

Lemma 4. For all PXY Z , we have simY (Z → X) if and only if

simY (Z → (X ↘ Y )) .

Proof. Let K := X ↘ Y . K is a function of X and can be simulated whenever
the same holds for X. On the other hand, let PK|Z be a channel that simulates
K. It follows from Lemma 3 that there exists a channel PX|K—which is equal
to PX|K— such that the channel PX|Z :=

∑
PX|KPK|Z simulates X. 2

Lemma 5. For all PXY Z , we have simZ(Y → [X, Y ]) if and only if X ←→
Y ←→ Z.

Proof. Suppose first that we have simZ(Y → [X, Y ]). There must exist a channel
PX̂Ŷ |Y such that PX̂Ŷ Z = PXY Z holds, where PX̂Ŷ Z =

∑
PY ZPX̂Ŷ |Y . Let

K := Y ↘ Z and K̂ := Ŷ ↘ Z. Because of Z ←→ Y ←→ Ŷ and PŶ Z = PY Z ,
we have Z ←→ Y ←→ K̂ and PK̂Z = PKZ . It follows from Lemma 2 that K̂ = K
holds. From Lemma 1 follows that PY |KZ = PY |K . We also have PX̂|K̂Ŷ = PX̂|Ŷ .
Now,

PX̂Ŷ Z =
∑

y

PY ZPX̂Ŷ |Y =
∑

y

∑
k

PKZPY |KZPX̂Ŷ |Y

=
∑

k

PKZ

∑
y

PY |KPX̂Ŷ |Y =
∑

k

PKZPX̂Ŷ |K

=
∑

k

PK̂ZPX̂Ŷ |K̂ =
∑

k

PK̂ZPŶ |K̂PX̂|K̂Ŷ = PŶ ZPX̂|Ŷ .

It follows that PX|Y Z = PX̂|Ŷ Z = PX̂|Ŷ = PX|Y holds and, hence, X ←→ Y ←→
Z.

Suppose now that we have X ←→ Y ←→ Z. It follows PX|Y Z = PX|Y . Let
PX̂Ŷ |Y := PXY |Y . We get

PX̂Ŷ Z =
∑

y

PY ZPX̂Ŷ |Y = PY ZPX|Y = PY ZPX|Y Z = PXY Z .

2
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3 Pseudo-Signature Schemes

3.1 The Case of Three Players

We will state the exact condition under which a PSS can be set up from correlated
pieces of information. We need the following lemma.

Lemma 6. Let PXY Z be the probability distribution of three random variables
X, Y , and Z. Then the following three conditions are equivalent:

1. There exist two channels PX|X and PX̂Ŷ |Y such that PXY = PXY and
PXY Z = PX̂Ŷ Z hold, where PXY =

∑
x PXY PX|X , PXY Z =

∑
x PXY ZPX|X ,

and PX̂Ŷ Z =
∑

y PY ZPX̂Ŷ |Y ,
2. simZ(Y → [X ↘ Y, Y ]) ,
3. (X ↘ Y )←→ Y ←→ Z .

Proof. Lemma 5 implies that 2. and 3. are equivalent. In the following we will
prove that 1. and 2. are equivalent.

Assume that 1. is true. We have simZ(Y → [X,Y ]) for some X with PXY =
PXY and Y ←→ X ←→ X. Let K = X ↘ Y and K = X ↘ Y . We have
PKY = PKY and Y ←→ X ←→ K. From Lemma 2, it follows K = K. Since K
is a function of X, we get simZ(Y → [X ↘ Y, Y ]).

Assume now that 2. is true. Hence, there exists a channel PKY |Y such that
PKY Z = PKY Z holds for K := X ↘ Y . Lemma 3 implies that there exists a
channel PX|K—which is equal to PX|K—such that PXY = PXY holds. We set
PX̂Ŷ |Y :=

∑
k PX|KPKY |Y and PX|X :=

∑
k PX|KPK|X to get

PXY =
∑

x

PXY PX|X =
∑

x

PXY

∑
k

PX|KPK|X =
∑

k

PX|K

∑
x

PXY PK|X

=
∑

k

PX|KPKY =
∑

k

PX|KPKY = PXY ,

PX̂Ŷ Z =
∑

y

PY ZPX̂Ŷ |Y =
∑

y

PY Z

∑
k

PX̂|KPKY |Y =
∑

k

PX̂|K

∑
y

PY ZPKY |Y

=
∑

k

PX̂|KPKY Z =
∑

k

PX̂|KPKY Z =
∑

k

PX̂|K

∑
x

PXY ZPK|X

=
∑

x

PXY Z

∑
k

PX̂|KPK|X =
∑

x

PXY ZPX|X = PXY Z .

2

Our pseudo-signature protocol makes use of typical sequences. Intuitively, a
sequence of independent realizations of a random variable is typical if the actual
rate of occurrences of every specific outcome symbol in the sequence is close to
the probability of this symbol.
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Definition 5. [3, 9] Let X be a random variable with distribution PX and range
X , let n > 0 be an integer, and let γ > 0. A sequence xn = (x1, . . . , xn) ∈ Xn

is called (strongly) γ-typical if, for all a ∈ X , the actual number N(a, xn) of
appearances of a in xn satisfies∣∣∣N(a, xn)

n
− PX(a)

∣∣∣ ≤ γ

|X |
.

It is a consequence of the law of large numbers that for every γ > 0, suf-
ficiently long sequences of independent realizations of a random variable are
γ-typical with overwhelming probability.

Theorem 1. [3, 9] Let Xn = X1 · · ·Xn be a sequence of n independent real-
izations of the random variable X with distribution PX and range X , and let
0 < γ ≤ 1/2. Then

Prob [Xn is strongly γ-typical ] = 1− 2−Ω(nγ2) .

The following protocol allows P1 for signing a bit along the transfer path P1 →
P2 → P3.

Protocol 1 Let PXY Z be such that simZ(Y → [X ↘ Y, Y ]) does not hold. Let
K := X ↘ Y and L := [K, Y ]↘ Z. Lemma 4 implies that there must exist δ > 0
such that for all channels PL|Y , the statistical distance between the distributions
PLZ and PLZ is at least δ.

Let n be an even integer, and let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples
distributed independently according to PXY Z . Let γ > 0 be a security parameter
and n be large enough. Let P1, P2, and P3 know (X1, . . . , Xn), (Y1, . . . , Yn), and
(Z1, . . . , Zn), respectively. Let, finally, m ∈ {0, 1} be the value P1 wants to sign.

– P1 calculates Ki := Xi ↘ Yi and sends (m,K1+(n/2)m, . . . ,Kn/2+(n/2)m) to
P2.

– P2 checks whether the received Ki and the corresponding Yi are a γ-typical
sequence with respect to PKY . If so, he accepts, calculates Li := [Ki, Yi]↘
Zi, and sends (m,L1+(n/2)m, . . . , Ln/2+(n/2)m) to P3.

– P3 checks whether the received Li and the corresponding Zi are a δ/2-typical
sequence with respect to PLZ . If so, he accepts.

Theorem 2. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let P1 be able to send messages to P2, and P2 to P3.

If simZ(Y → [X ↘ Y, Y ]) does not hold and n is large enough, then Proto-
col 1 achieves PSS for the three players with the transfer path P1 → P2 → P3.

Proof. We prove that Protocol 1 implements a PSS. First of all, it follows from
Theorem 1 that the value from a correct sender P1 is accepted by P2 except
with exponentially small probability. If P2 is correct and accepts a value and if γ
is small enough, Lemma 2 implies that P1 must indeed have sent an arbitrarily
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large fraction (for sufficiently large N) of correct values Ki = Xi ↘ Yi to P2.
(Note that the knowledge of the values Xj for j 6= i do not help P1 to cheat
since they are independent of Xi and Yi.)

Therefore, also an arbitrarily large fraction of the values Li = [Ki, Yi]↘ Zi

are correct and—if P3 is correct—P3 will accept the values Li sent to him by P2

(except with exponentially small probability).
P2, however, cannot (except with exponentially small probability) send any

other value than the one sent by P1. Indeed, his ability to do so would imply
the existence of a channel PL|Y such that PLZ and PLZ are identical (see the
proof of Lemma 6 in [23]); such a channel, however, does not exist because of
the assumption stated at the beginning of the protocol. 2

We now show that the condition of Theorem 2 for the achievability of a
PSS among three players is tight, in other words, that simZ(Y → [X ↘ Y, Y ])
and simY (Z → [X ↘ Z,Z]) imply that no PSS with signer P1 is possible. In
order to demonstrate impossibility, we use a similar technique as in [14]. There,
the impossibility of broadcast among three players secure against one corrupted
player was shown by analyzing a related system obtained by copying some of
the players and rearranging the original players together with their copies in a
specific way.

Theorem 3. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let the players be connected by pairwise secure channels.

If simZ(Y → [X ↘ Y, Y ]) and simY (Z → [X ↘ Z,Z]) hold, then there does
not exist—for any n—a PSS for the three players with any transfer path and
with P1 as the signer.

Proof. Let us assume that there exists a protocol among the players P1, P2, and
P3 that achieves a PSS for the three players with transfer path P1 → P2 → P3.
From Lemma 6, it follows that there exist channels PX|X and PX̂Ŷ |Y such that
PXY = PXY and PXY Z = PX̂Ŷ Z hold, and PX

′|X and PX̂′Ẑ′|Z such that PXZ =
PX

′
Z and PX

′
Y Z = PX̂′Y Ẑ′ hold.

Let P ′
1 be an identical copy of P1. We now rearrange the four players P1,

P2, P3, and P ′
1 in the following way to form a new system. The analysis of that

system then reveals that no PSS among the three original players is possible.
Note that, in the new system, no player is corrupted: It is rather the arrangement
of this new system that simulates corruption in the original system towards the
players in the new system.

– P1 is still connected to P2 as originally, but disconnected from P3, i.e., all
messages P1 would send to P3 are discarded and no message P3 would send
to P1 is ever received by P1.

– P2 is still connected to P1 and P3 as in the original system.
– P3 is still connected to P2 as originally, but disconnected from P1. Instead,

P3 is connected to P ′
1: All messages that P3 would send to P1 are delivered
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to P ′
1 instead, and all messages P ′

1 would send to P3 are indeed delivered to
P3.

– P ′
1 is connected to P3 as originally, but disconnected from P2.

Furthermore, instead of Xi, let P1 have input Xi and P ′
1 have input X

′
i. Let

them execute their local programs defined by the PSS protocol, where P1 signs
the message m and P ′

1 signs the message m′.

– Since PXY = PXY holds, the joint view among P1 and P2 is indistinguishable
from their view in the original system where P1 holds input m and P3 is
corrupted in the following way: P3 cuts off communication to P1, simulates
P ′

1 using the channel PX̂′Ẑ′|Z to produce the values X̂ ′ and Ẑ ′, and acts
towards P2 as if communicating with P ′

1 instead of P1 (indistinguishability
follows from PX

′
Y Z = PX̂′Y Ẑ′). Hence, by the correctness property, P2 must

accept m as signed by P1.
– The joint view of P2 and P3 is indistinguishable from their view in the original

system where P1 is corrupted in the following way: P1 simulates player P ′
1,

uses the channel PX|X for his own and the channel PX
′|X for P ′

1’s input, and
acts towards P3 as P ′

1. Thus, by the transferability property, P3 must accept
the transfered message m from P2.

– Since PXZ = PX
′
Z holds, the joint view of P ′

1 and P3 is indistinguishable
from their view in the original system4 where P ′

1 holds input m′ and P2 is
corrupted in the following way: P2 cuts off communication to P ′

1, simulates
P1 using the channel PX̂Ŷ |Y to produce the values X̂ and Ŷ , and acts towards
P3 as if communicating with P1 instead of P ′

1 (indistinguishability follows
from PXY Z = PX̂Ŷ Z). Hence, by the unforgeability property, P3 must reject
the signature transferred to him by P2.

However, this is impossible since P3 cannot accept and reject m at the same
time. The proof for the transfer path P1 → P3 → P2 is analogous. Hence, there
does not exist a PSS for any transfer path. 2

If the condition of Theorem 3 does not hold, then there exists a transfer
path—namely either P1 → P2 → P3 or P1 → P3 → P2—for which Theorem 2
can be applied. Therefore, the bound of Theorem 3 is tight, and we can state
the exact condition under which a PSS for three players and a designated signer
exists.

Theorem 4. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let the players pairwisely be connected by secure channels.

There exists a PSS for the three players with transfer path P1 → Pj →
Pk (j 6= k) for large enough n if and only if either simZ(Y → [X ↘ Y, Y ]) or
simY (Z → [X ↘ Z,Z]) does not hold.
4 For simplicity, we assume the original system to consist of the players {P ′

1, P2, P3}
for this case.
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Application of Lemma 5 leads to the following corollary.

Corollary 1. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let the players pairwisely be connected by secure channels.

There exists a PSS for the three players with transfer path P1 → Pj → Pk

(j 6= k) for large enough n if and only if either (X ↘ Y ) ←→ Y ←→ Z or
(X ↘ Z)←→ Z ←→ Y does not hold.

We will now present a special case of noisy channels among three players
for which our PSS works. This special case is related to the “satellite scenario”
of [21] for secret-key agreement.

Corollary 2. Let R be a binary random variable and let X, Y , and Z be random
variables resulting from the transmission of R over three binary symmetric chan-
nels with error probabilities εX , εY , and εZ , respectively, such that 0 ≤ εX < 1/2,
0 < εY < 1/2 and 0 < εZ < 1/2 hold. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n
triples generated independently this way. Let P1, P2, and P3 be three players and
assume that they know Xi, Yi, and Zi, respectively. Let, finally, the players pair-
wisely be connected by secure channels. Then, for large enough n, there exists a
PSS for the three players with arbitrary transfer path.

Proof. We have that X ↘ Y , X ↘ Z and X are—up to renaming—equal, and
neither X ←→ Y ←→ Z nor X ←→ Z ←→ Y holds. 2

Corollary 3. Let the players P1, P2, and P3 be connected by a noisy broadcast
channel. This is a channel for which P1 has an input bit X, and P2 and P3

get output bits Y and Z, respectively, which result from sending X over two
independent noisy channels with error probabilities 0 < εY < 1/2 and 0 < εZ <
1/2. Then a PSS for the three players with arbitrary transfer path can be realized.

Proof. Let the transfer path be P1 → P2 → P3. P1 sends n random bits over the
channel. Both P2 and P3 check whether the received values are indeed random,
that is, whether they are γ2- and γ3-typical. The values γ2 and γ3 are chosen
such that even if P1 cheats, P2 does not accept if P3 does not either—except
with small probability. The resulting joint distribution satisfies the condition of
Corollary 2. 2

3.2 The Case of More than Three Players

Theorem 2 can be generalized to p > 3 players in a natural way. Assume
that p players P1, . . . , Pp want to implement a PSS along the transfer path
P1 → · · · → Pp. Let (X1

1 , . . . , Xp
1 ), . . . , (X1

n, . . . , Xp
n) be n lists distributed inde-

pendently according to PX1···Xp . Let player Pj know the values Xj
i .

As in the protocol for three players, player P1 sends m together with his
signature (m,K1

1+(n/2)m, . . . ,K1
n/2+(n/2)m), where K1

i := X1
i ↘ X2

i , to P2. P2 is

11



able to check whether P1 sent the correct values K1
i or not, and he only accepts

the signature if almost all values K1
i were correct.

Now we let P2 sign the value m himself, using the random variable [X2
i ,K1

i ].
(Since he only received half of the values K1

i , he is able to sign m, but not 1−m.)
He sends (m,K2

1+(n/2)m, . . . ,K2
n/2+(n/2)m), where K2

i := [X2
i ,K1

i ]↘ X3
i , to P3.

Now P3 can check the signature and, if he accepts, sign the value m himself,
and so forth. Note that the security parameter for every signature must be less
restrictive than the previous one, because some of the received Kj

i may have
been faulty. Nevertheless, the error probability remains exponentially small in
n. Player Pj is not able to forge a signature if

simXj+1(Xj → [Kj−1, Xj ])

does not hold. Hence, we get the following theorem.

Theorem 5. Let (X1
1 , . . . , Xp

1 ), . . . , (X1
n, . . . , Xp

n) be n lists distributed indepen-
dently according to PX1···Xp . Let P1, . . . , Pp be p players, and let Pj know all the
Xj

i . Assume that for all i, player Pi can send messages to Pi+1 in a secure way
(where Pp+1 = P1). Let K1 := X1 ↘ X2 and Kj := [Xj ,Kj−1] ↘ Xj+1 for
j ∈ {2, . . . , n− 1}.

Then, for large enough n, there exists a PSS for p players with the transfer
path P1 → · · · → Pp and tolerating one corrupted player if there does not exist
j ≥ 2 with

simXj+1(Xj → [Kj−1, Xj ]) .

4 Broadcast and Multi-Party Computation

4.1 The Case of Three Players

We will now apply the results of Section 3 and state the exact condition under
which broadcast is possible for three players.

Theorem 6. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Assume that P1, P2, and P3 know the values Xi, Yi,
and Zi, respectively. Let all players pairwisely be connected by secure channels.

If n is large enough and simZ(Y → [X ↘ Y, Y ]) or simY (Z → [X ↘ Z,Z])
does not hold, then there exists a broadcast protocol for three players with sender
P1.

Proof. If either simZ(Y → [X ↘ Y, Y ]) or simY (Z → [X ↘ Z,Z]) does not hold,
it is possible to set up a PSS with either the transfer path P1 → P2 → P3 or
P1 → P3 → P2. It was shown in [16] that this is sufficient to construct a broad-
cast protocol for three players. 2
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Theorem 7. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Assume that P1, P2, and P3 know the values Xi, Yi,
and Zi, respectively. Let all players pairwisely be connected by secure channels.

If both simZ(Y → [X ↘ Y, Y ]) and simY (Z → [X ↘ Z,Z]) hold, then there
exists no broadcast protocol (for any n) for three players with sender P1.

Proof. From Lemma 6, it follows that there exist channels PX|X and PX̂Ŷ |Y such
that PXY = PXY and PXY Z = PX̂Ŷ Z hold, as well as PX

′|X and PX̂′Ẑ′|Z such
that PXZ = PX

′
Z and PX

′
Y Z = PX̂′Y Ẑ′ hold.

As in the proof of Theorem 3, we duplicate the sender P1 and rearrange the
four resulting players in the following way: We disconnect P1 and P3 but connect
P3 to P ′

1 instead, whereas P2 stays connected as originally.
P1 gets input Xi, constructed by applying the channel PX|X on Xi. P ′

1 gets

input X
′
, constructed by applying the channel PX

′|X on Xi. P2 gets input Yi,
and P3 gets input Zi.

We give P1 and P ′
1 two different inputs m and m′ and let them all execute

the protocol; they all output a value. We now consider three scenarios of an
original system involving some of the players P1, P ′

1, P2, and P3 of the new
system obtained by interconnecting all four players as described above.

– Let P1 and P2 be correct and P3 be corrupted. Using his variables Zi, P3

can produce X̂ ′
i and Ẑ ′

i such that P2 cannot distinguish them from X
′
i and

Zi. Furthermore, P2 cannot distinguish Xi, which he receives from P1, from
Xi. P3 simulates P ′

1, giving him the values X̂ ′
i as input, and using the values

Ẑ ′
i himself.

– Let P ′
1 and P3 be correct and P2 be corrupted. Using his variables Yi, P2

can produce X̂i and Ŷi such that P3 cannot distinguish them from Xi and
Yi. Furthermore, P3 cannot distinguish X

′
i, which he receives from P1, from

Xi. P2 simulates P1, giving him the values X̂i as input, and using the values
Ŷi himself.

– Let P2 and P3 be correct and P1 be corrupted. Using his variables Xi, P1

can produce Xi and X
′
i. He can simulate player P ′

1 with X
′
i as input and

use Xi for himself.

The joint view of the players P1 and P2 in the new system is indistinguishable
from their view in the first scenario, and they must thus output m. The joint
view of the players P ′

1 and P3 in the new system is indistinguishable from their
joint view in the second scenario, and they, therefore, output m′. But also the
joint view of players P2 and P3 in the new system is indistinguishable from their
view in the third scenario, and thus they must agree on their output value, which
contradicts what we derived above. Therefore, no broadcast protocol can exist. 2

Using Theorems 6 and 7 we can now state the exact condition under which
broadcast and MPC among three players are possible.
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Theorem 8. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let all players pairwisely be connected by secure channels. Broadcast
with sender P1 is possible if and only if

¬
(
simZ(Y → [X ↘ Y, Y ]) ∧ simY (Z → [X ↘ Z,Z])

)
holds.

Corollary 4. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let all players pairwisely be connected by secure channels.

Broadcast with sender P1 is possible if and only if

¬
(
(X ↘ Y )←→ Y ←→ Z ∧ (X ↘ Z)←→ Z ←→ Y

)
holds.

Lemma 7. Given three players P1, P2, and P3, connected pairwisely by secure
channels and additionally by broadcast channels from P1 to {P2, P3} and from
P2 to {P1, P3} (but no other primitive such as a PSS among the players). Then
broadcast from P3 to {P1, P2} is impossible.

Proof. This follows from a generalization of the proof in [14], where only pair-
wise channels are assumed. 2

Theorem 9. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi,
respectively. Let all players pairwisely be connected by secure channels.

Broadcast with arbitrary sender as well as general multi-party computation
secure against one corrupted player are possible if and only if

¬
(
simZ(Y → [X ↘ Y, Y ]) ∧ simY (Z → [X ↘ Z,Z])

)
∧

¬
(
simX(Z → [Y ↘ Z,Z]) ∧ simZ(X → [Y ↘ X, X])

)
∧

¬
(
simX(Y → [Z ↘ Y, Y ]) ∧ simY (X → [Z ↘ X, X])

)
holds.

Proof. The condition is sufficient for the possibility of broadcast because of The-
orem 8 and Lemma 7. The achievability of multi-party computation then follows
from [1, 26, 10]. Furthermore, since broadcast is a special case of multi-party
computation, the impossibility of broadcast immediately implies the impossibil-
ity of MPC. 2
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Corollary 5. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be n triples distributed indepen-
dently according to PXY Z . Let P1, P2, and P3 know the values Xi, Yi, and Zi

respectively. Let all players pairwisely be connected by secure channels.
Broadcast with arbitrary sender as well as general multi-party computation

secure against one corrupted player are possible if and only if

¬
(
(X ↘ Y )←→ Y ←→ Z ∧ (X ↘ Z)←→ Z ←→ Y

)
∧

¬
(
(Y ↘ Z)←→ Z ←→ X ∧ (Y ↘ X)←→ X ←→ Z

)
∧

¬
(
(Z ↘ Y )←→ Y ←→ X ∧ (Z ↘ X)←→ X ←→ Y

)
holds.

4.2 The Case of More than Three Players

Corollary 6. Let P1, . . . , Pn be n players. Let all players pairwisely be con-
nected by secure channels. Furthermore, let every triple of players (Pi, Pj , Pk)
have enough independent realizations of Xi, Xj, and Xk, respectively, such that
either simXk(Xj → [Xi ↘ Xj , Xj ]) or simXj (Xk → [Xi ↘ Xk, Xk]) does not
hold. Then broadcast and multi-party computation unconditionally secure against
t < n/2 corrupted players are achievable.

Proof. From Theorem 9, it follows that any triple of players can execute a broad-
cast protocol. Using the protocol from [17], broadcast for n players tolerating
t < n/2 corrupted players can be achieved. Using [1, 26, 10], a protocol for uncon-
ditional MPC can be constructed that can tolerate t < n/2 corrupted players. 2

5 Concluding Remarks

In the model of unconditional security, we have completely characterized the
possibility of pseudo-signatures, broadcast, and secure multi-party computation
among three players having access to certain correlated pieces of information.
Interestingly, this condition is closely related to a property called (non-) simu-
latability previously studied in an entirely different context, namely information-
theoretic secret-key agreement.

As a consequence of this result, we gave a new, weaker condition for the
possibility of achieving unconditional broadcast between n players and any mi-
nority of cheaters and, hence, general multi-party computation under the same
conditions.
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