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Abstract— The problem of asynchronous perfectly secure com-
munication via one-time pads (OTP) has been recently introduced
by Di Crescenzo and Kiayias. There, several players share the
same OTP to be used in parallel but it is not known in advance
which players will consume how many bits of the pad. Based on
the common OTP and only partial local knowledge of how many
key bits have already been used by each other player, the goal is
to commonly consume as many key bits as possible without any
overlap.

In this paper, we consider a related problem with immediate
implications to the previous model. We consider n players to
share the same k keys of length ` bits. The goal is to assign
a key sequence to each player such that, for as many keys as
possible and independently of which player uses how many of
them, it is guaranteed that all used keys are independent. Such an
assignment is called loss-free if k keys can always be consumed
independently. Note that, in contrast to the previous model, the
players are ignorant of each other’s key consumptions.

We first observe a simple loss-free solution for the case that
the key is of certain (small) minimal length `. Furthermore, for
the case of key length ` = 1 (the most general case), we show
that loss-free assignments are possible if and only if the number
of players is at most three.

Our solutions directly apply to the model of Di Crescenzo
and Kiayias. For the case n = 3, we strictly improve over their
solution. For n > 3, we still partially improve over their solution
despite the fact that our construction is simple and oblivious.

I. INTRODUCTION

When sharing a one-time pad (OTP) for bidirectional com-
munication or the communication amongst more than two
players, special care has to be taken that each key bit is used
at most once. In particular, this is the case when there is no
prior schedule on how much key will be used by each player
– while communication being asynchronous in the sense that
the players do not necessarily get updated about what portions
of the key have already been used.

In [2], Di Crescenzo and Kiayias proposed the first model
for asynchronous communication over one-time pads: A set of
n players share k key bits. The players want to consume the
keys in order to broadcast OTP-encrypted messages to each
other whereas messages only eventually arrive; and it is not
known in advance which player will use how many keys and
when. The model involves an undelivery parameter d: At any
time, each player is unaware of at most d key bits that have
already been used so far — whereas it knows all remaining
key bits that have already been wasted. The goal now is to be

able to use as many keys as possible until an eventual overlap
— independently of the arising schedule of key use.

In [2], the quality of the scheme is measured by the
efficiency ratio r which is the (worst case) achievable ratio
between the number of key bits that can be consumed without
collision and the overall number of key bits. For the case
n = 2 they observe the tight bound r = 1 − d

k (if d <
n/2). For general n they give a suboptimal solution where
r = 1 − d

k (L − 2)log n−1 − log n−2
L for d < kL1−log n —

where L is defined as “a small function in k” but is not further
specified.

In this paper, we consider a more natural, related problem
with immediate implications to the model in [2]. We consider
keys of length ` ≥ 1 bits and assume that a player always
completely consumes such a block, e.g, that message blocks
are of size ` bits and that always a whole message block
gets OTP encrypted. The goal is to assign a key sequence
to each player such that, for as many keys as possible and
independently of which player uses how many of them, it
is guaranteed that all used keys are independent. Such an
assignment is called loss-free if k keys, i.e., the full entropy,
can always be consumed independently. Note that, in contrast
to [2], the players do not learn anything about the other
players’ key consumptions.

A scenario where this model directly applies is the follow-
ing. A central entity distributes the k keys to n external players
whereas the external players have no immediate contact to
each other, and the communication between the external
players and the sender is cumbersome. The external players
now communicate back to the center by using the distributed
key information while trying to avoid collisions of the used
keys. When approaching a possible overlap, the center notifies
the external players or distributes a new set of keys.

For our problem, we first observe a simple loss-free solution
for the case that the keys are of certain minimal length ` > 1.
Furthermore, for the case of key length ` = 1 (i.e., bit-wise key
consumption — the most general case), we show that loss-free
assignments are possible if and only if the number of players
is at most three.

When applied to the model in [2], our solution for n = 3
strictly improves over the previous solution. For n > 3, in
contrast to [2] where d < mL1−log n is required, our bit-wise
solution does not impose any restriction on d. Furthermore,
our solution for n > 3 is optimal for the case where each key



is of size ` ≥ log(nk).

II. LOSS-FREE ASSIGNMENT FOR KEY LENGTH ` ≥ log nk

The observation for our solution based on keys of certain
minimal length is to use k-wise independent functions over
a domain of nk elements. This can be done along the lines
of Carter and Wegman [1] by choosing, as the k keys, the
coefficients of a random polynomial of degree at most k − 1
over a finite field with at least nk elements (this can also be
seen as a Shamir secret sharing [3]). Each player is assigned a
set of k field elements such that all sets are pairwise disjoint.
Each player then uses, as its personal keys, the evaluation
points of the polynomial at its own set of elements. This
construction demands that the field has at least nk elements,
and thus a key length of at least log(nk). Furthermore, an
additional bit can be spared by assigning each player the same
second half of the keys (no two players will reach into the
second half of their keys).

PROPOSITION 1: Loss-free assignments of k keys among
n players can be achieved if the key length ` satisfies ` ≥
log(nk)− 1.

Proof: The proposition follows from the above discus-
sion.

Clearly, this scheme can also be used with respect to key
length λ = 1. In our model, it makes sense to assume that
k ≥ n. Then, in the worst case, k− (n−1) keys have already
been fully used up whereas, of each one of the remaining n−1
keys, only one bit has been consumed. Thus, in the worst case,
(n− 1)(`− 1) key bits are lost.

COROLLARY 2: Among n players, for key length 1 and
any parameter k, k` = k log(nk) key bits can be assigned
such that the efficiency ratio satisfies

r ≥ k`− (n− 1)(`− 1)
k`

>
k`− n`

k`
= 1− n

k
.

When applied to the model in [2], we have to additionally
consider undelivery d.

COROLLARY 3: In the model of [2] among n players (` =
1), for any parameters k and d, k log(nk) key bits can be
assigned such that the efficiency ratio satisfies

r ≥ 1− n

k
− d

k log(nk)
.

III. LOSS-FREENESS FOR KEY LENGTH ` = 1

In this section, we demonstrate the following result.
THEOREM 4: For key length ` = 1, loss-free assignments

for k > 1 exist if and only if n ≤ 3. In the positive case, they
exist for any ` ≥ 1 and any k ≥ 1.

Proof: The theorem follows from the following Lemmas 5
and 6.

A. Loss-free assignment for n = 3

Let b = (b1, b2, . . . , bk)T be the vector containing the k
random key bits. A solution for case n = 2 was already
observed in [2]: The first player p1 uses the bits in forward
sequence where the second player uses the bits backwards.

This assignment can be expressed by the k × k matrices M1

and M2 where the key-bit sequence used by player pi is given
by the vector components of Mib:

M1 = I and M2 =


0 0 . . . 0 0 1
0 0 . . . 0 1 0
0 0 . . . 1 0 0

· · ·
1 0 . . . 0 0 0

 .

Our solution for the case n = 3 involves the same strategy
for the first two players, described by M1 and M2, whereas
the matrix M3 describing player p3’s strategy is formed in the
following way along the lines of the Sierpinksi triangle or,
equivalently, the binary Pascal triangle, put upside down:

M3 =



1 1 1 1 1 1 1 1 . . .
0 1 0 1 0 1 0 1 . . .
0 0 1 1 0 0 1 1 . . .
0 0 0 1 0 0 0 1 . . .
0 0 0 0 1 1 1 1 . . .
0 0 0 0 0 1 0 0 . . .
0 0 0 0 0 0 1 0 . . .

· · ·


.

More precisely, the matrix M3 is defined as follows. We have

(M3)1j = 1 for all j , (1)
(M3)i1 = 0 for i > 1 , (2)
(M3)ij = (M3)i+1,j ⊕ (M3)i+1,j+1 for i < k and j < k .(3)

(4)

Note that equations (1), (2), and (3) — i.e., the first row,
the first column, and the linear recursion law — uniquely
determine M3.

LEMMA 5: For any key length ` ≥ 1, loss-free assignments
are possible if n ≤ 3.

Proof: We can wlog assume that there are three players.
We have to show that if the first two players together use up
k− s bits of the key, then the third player can use s of his. In
other words, this means that if we look at an s× s sub-matrix
of M3 of the form

A := (M3)1,...,s;j,...,j+(s−1) ,

then its rank must be full, i.e., exactly s. In order to see this,
we make the following crucial observation: If row i > 1 of
A starts by 1, we can compute a new matrix A from A as
follows: We add the first row of A (i.e., (1, 1, . . . , 1)) to the
ith row, the second row of A to the (i + 1)st row, and so on,
until we reach the kth row. We then continue similarly with
respect to all other rows starting with 1 until there are no such
rows left (except the first one).

After this process, we end up with a matrix that has the
same determinant as A, and which satisfies (1), (2), and (3):
Property (1) holds because we did not change the first row.
Property (2) holds due to the process described. Property (3)
holds because the recursive law is linear: if it holds for the



summands (which it does since they are sub-matrices of A),
then so it does for the sum.

Therefore, the resulting matrix is equal to (M3)1,...,s;1,...,s,
which is triangular and has determinant 1. This concludes the
proof.

B. Impossibility of loss-freeness for n ≥ 4
We now demonstrate that, among n ≥ 4 players and for key

length ` = 1, at least one key bit must be lost for any strategy
among the players.

LEMMA 6: For key length ` = 1 there is no loss-free
assignment for n ≥ 4 players when k > 1.

Proof: We first observe that there is no loss-free assign-
ment for k = 2. For any assignment, we can wlog assume that
the first player uses the key bits in sequence: b1, b2. Now, the
three other players’ first bits must all be independent of b1,
and independent of each other — which is impossible when
only given two bits of entropy.

Now consider the general case where k ≥ 2 and assume that
exactly k − 2 keys have been consumed. Even if we assume
that every player knows which key bits have been used so far
(which is a stronger assumption), there remain exactly four
different possible keys. For these “two key bits” there is no
loss-free assignment as follows from the case k = 2.

Applied to the model in [2], when dealing with undelivery
d > 0, two cases have to be distinguished. If d ≥ n−1

n k` then

an optimal strategy is to split the key into n parts resulting in
efficiency ratio

⌊
k`
n

⌋
/(k`) ·= 1

n . Otherwise, we can augment
our construction with a buffer of d keys that has to be kept
unused. We get

COROLLARY 7: In the model of [2], for any number k of
key bits (` = 1) and any undelivery d, there is an assignment
for n = 3 players with the following efficiency ratio which is
optimal:

r ≥ max( ·=
1
3
, 1− d

k
) .

IV. CONCLUSION

We proposed an alternative model to the one of Di
Crescenzo and Kiayias [2] for asynchronous multi-party use
of the same one-time pad where the players are ignorant about
each other’s key consumptions. We showed that loss-free key
consumption in the most general case is achievable if and only
if the number of players is at most 3. Although our model is
more restricted we still partially improved over the solution
in [2].
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