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Abstract—Landauer’s principle states that erasure of infor-
mation has a thermodynamic price in the form of free energy
that is dissipated as heat to the environment. We show that
this manifestation of the second law of thermodynamics gives
rise to a classical no-cloning principle based solely on a bound
on the accessible free energy. Like in the quantum case, the
principle allows for realizing cryptographic functionalities such
as key agreement, as discussed in the present text. Our protocols
resemble the known ones for quantum key distribution and for
the bounded-storage model; however, neither quantum theory
nor any bound on available memory space is required for them
to work. Investigating its cryptographic possibilities sheds light
on the roots of Landauer’s principle.

I. THE SECOND LAW OF THERMODYNAMICS

The history of the second law of thermodynamics started
with Carnot’s study [1] of the efficiency of heat engines
operating between two reservoirs. The outcome motivated
Kelvin to define the absolute temperature scale. Kelvin also
derived his own version of the second law — “No process
has as its sole effect the extraction of work from one single
heat reservoir” —, whereas Clausius’ variant reads: “Heat does
not spontaneously flow from a colder to a hotter reservoir”
(see [2]). Boltzmann was the first to give the second law a
combinatorial twist by claiming that a closed system always
transites from a smaller to a larger macrostate, not vice versa:
“Entropy does not decrease.” This line of reading is essentially
information theoretical and has inspired researchers to find
“informational second laws” (e.g., Cover [3]).

Landauer [4], along his slogan “Information is Physical,”
stated in his version of the second law that the erasure of
information requires a compensation in the form of free energy
that is then dissipated as heat to the environment. Inspired by
this, Ben Schumacher formulated the law that “No process has
as its sole consequence the erasure of information.”

The fact that Landauer’s principle asks the logical erasure of
information to have a thermodynamic compensation is weirdly
hybrid — when thought through, it ends up saying that:

“In a closed system, no information is erased with time.”

The rationale is that when a system is closed, then no envi-
ronmental compensation of information erasure is possible, so
no erasure.

In a combinatorial, finite toy model, it has been shown [5]
that not only the Clausius- and Kelvin- [6], but also the Carnot-
reading of the second law follows from the no-information-
erasure principle. (Note that a priori, a “no-erasure second
law” is not asymmetric in time and cannot per se give rise

to an arrow of time; if, however, fresh randomness arises in
the time evolution of a closed system, then that is irreversible,
since the reverse transformation would “undo,” “forget” that
randomness and so violate logical reversibility.)

The second law of thermodynamics is rarely connected to
constructive consequences or applications. One of the few
exceptions is perhaps the use of an entropic force such as
osmotic pressure to produce work in an “osmotic power plant”
(e.g., [7]). In the present article, we propose to use the law
to first derive a no-cloning principle based on available-work
limitations (Section II), and from it the security of a key-
agreement protocol (Section III); the latter resembles QKD
protocols [8], yet its workings and proof are purely classical.
Our protocols are related to schemes in the bounded-storage
model, whereas we do not require the assumption of limited
memory, only energy.

II. NO-CLONING FROM LANDAUER’S PRINCIPLE

Quantitatively, Landauer’s principle states that the era-
sure — meant is here: reset the corresponding binary degree
of freedom to 0 — of one bit of information requires work
of at least k7 In2,! which is then dissipated as heat to the
environment (a heat bath of temperature 7'); this dissipation
is what compensates the entropy decrease by the resetting.
In turn — that observation has been called the “converse of
Landauer’s principle” and brought forward by Bennett [10] —
the all-zero-string 0' of a certain length [ has a work value of
kT In 2-1 (the work comes from the environmental heat bath of
temperature 7'; in particular, the first law of thermodynamics
is not violated).

Our only assumption overall the present article is that the
total free energy is (limited by an equivalent of an all-zero-
string of length) of the order n. (Note that whereas the
available length of all-zero-strings is limited in our model for
all parties, their total memory is not — as long as the latter
is filled with randomness, that is incompressible data. In this
sense, our model is only loosely related to the well-studied
bounded-storage model [11].) Let

N :=2",

where n is proportional to the totally available free energy.
Therefore, it is impossible to obtain an all-zero-string 0V of
length N. Let us observe first that such a string would allow

U1t has been proposed to turn the principle around in the sense as using it for
defining temperature as "joule per bit," getting rid of Boltzmann’s constant [9].



for producing an extra identical copy of a general string of
length N, say X(N): The reason is that the transformation

XMoN +— XM x ™)

is logically reversible, in both ways in fact, even if X
is “random,” i.e., uniformly random, or incompressible (the
Kolmogorov complexity of which is essentially equal to its
length, see [6]). According to Fredkin and Toffoli [12], this
transformation can thus be carried out in both ways thermody-
namically neutrally: Redundancy, in particular identical copies,
thus have the same free-energy value as an all-zero-string of
corresponding length.

The following is impossible — and this is our “no-cloning
principle without quantum”: The transformation

X(N)Hy(N) A X(N)HX(N)

is impossible if Y is incompressible and independent from
X. In fact, only an amount of information of the order of
n = O(logN) can be copied onto a tape with initially
incompressible content — due to the free-energy constraint.

This principle has several cryptographic applications. The
first and most obvious one are unforgeable banknotes: If
something can in principle not be copied, then we can use
it for that [13].

In this note, we present a protocol for key agreement which
resembles quantum key distribution, but where our classical
no-cloning principle takes the role of quantum no-cloning:
Roughly speaking, Alice sends huge data sets to potentially
Eve, who then forwards them to Bob. All communication
is reversible, through swap channels, exchanging data sets
of equal size. By comparing hash values or bits at sampled
positions, Alice and Bob limit the noise in their respective
data; if it is too high, they abort; if it is not, they can limit
Eve’s information and generate secret keys. This “quantum key
distribution without quantum” is developed in the remainder
of this article.

We complete this section with some definitions. First, we
formalize free-energy bounds.

Definition 1. A party has free energy F' if it can produce a
zero string of length F' 4+ A with probability at least 272

This definition is based on the following fact.

Lemma 1. For any N,M,A € N, the logically reversible
computation of

ONHX(M) N ON+A||y(M—A)

is impossible except with probability 2=2 when XM) s
uniformly chosen at random.

Proof. This proof with finite M follows from logical re-
versibility, by which it holds that for any N, M,A € N,
there exists no reversible computation f : {0,1}V+M —
{0,1}¥+M guch that for more than a fraction 272 of the
XM) e £0,13M there exists Y(M=2) ¢ {0,1}M~4 such
that f(ON|| X)) = oN+2||]Y(M=4) An extended proof for

unbounded M is done in [14], and a proof for the quantum
analogue is sketched in [13]. O

For cryptographic purposes, it is useful to establish bounds
on the conditional min-entropy of an adversary.

Definition 2. The conditional min-entropy Ho(X|Y) is de-
fined as

Hoo(X]Y) = —log Y P(Y =y)maxP(X =z|Y =y).
Y

It has a clear operational meaning: it is the optimal probability
of correctly guessing X given side information Y.

Also useful for this work is the concept of variational
distance.

Definition 3. The variational distance between two random
variables X and Y is defined as

XY =g 3 X =i —p(V =i ()

IEXUY
It is operationally very useful because it characterizes the
impossibility to distinguish between X and Y — using any
physical experiment whatsoever. More precisely, given either
X or Y with probability 1/2, the optimal probability to
correctly guess which one it is amounts to (1 + 6(X,Y))/2.

Once a bound on the conditional min-entropy of the adver-
sary is obtained, we apply privacy amplification by hashing.

Definition 4 (2-universal hashing [15], [16]). Let H be a set
of hash functions from {0,1}" — {0,1}™. H is 2-universal
if, given any distinct elements z1, 22 € {0,1}"™ and any (not
necessarily distinct) elements y,y2 € {0,1}™, then
H
#{h S H‘ylzh(l‘l) AN ygzh(l‘g)} = % . 2)
Lemma 2 (Leftover hash lemma [17]-[20]). Leth : S®X —
{0,1}™ be a 2-universal hash function. If Hoo(X) > m+ 2e,
then
6((h(S7X),S)7U®S) <2 3)

S is a short uniformly random seed and X is the variable
whose randomness is to be amplified. U is the uniform
distribution of appropriate dimension. The symbol ® is used
to represent the joint probability of independent distributions.

III. QKD WITHOUT Q

Secret-key establishment is a fundamental primitive for two-
way secure communication because it allows for a perfectly
secure one-time-pad encryption between Alice and Bob, about
which Eve knows nothing (otherwise the protocol aborts).

Definition 5. A secret-key-establishment scheme is sound if,
at the end the protocol, Alice and Bob possess the same key
with overwhelming probability in the security parameter 7:
1
P(Ka# Kp) < . 4)

Definition 6. A secret-key-establishment scheme is infor-
mation-theoretically secure (i.e., almost-perfectly secret) if the



key Kp is uniformly random even given all of the adversary’s
side information F, except with probability at most negligible
in the security parameter v:

&)

where negl(v) is a function that decreases faster than any
inverse polynomial.

5((Kp, B),U © ) < negl(v),

A. Protocol

Theorem 1. The following secret-key-establishment protocol
is information-theoretically sound and secure against any
eavesdropper whose free energy is O(log N).? Alice and Bob
need a quantity of free energy that is O(log N).

Soundness is analyzed in Section III-B, and security in
Section III-C.

In what follows, the variables (A, B) € (A, B) are strings
of length N, while (X,Y) € (X,)) denote strings of
length roughly O(log N). Below, hy(p) = —plogep — (1 —
p)logy(1 — p) is the binary entropy.

Secret-key-establishment protocol:

1) Alice starts with X € X = {0,1}" in a uni-
formly random state (extracted from the thermal
environment of her lab). She draws uniformly at
random a subset C {1,..., N} of s+t positions
rawkey and copies (rawkey, X(rquiey)) — A to
her memory of size O(log N).

2) Alice sends X — Y to Bob using a reversible
channel (e.g., a SWAP channel); it is possibly
intercepted by Eve.

3) Bob announces the receipt to Alice on an authen-
ticated public channel. In case of no receipt, they
abort.

4) Alice publishes the subset positions rawkey on
the (noiseless) authenticated public channel so
that Bob can select Y[, qurey) — B. Alice and
Bob draw a test sub-subset of ¢ bits that they
sacrifice to estimate the error rate pe,ror between
A and B.

5) If the estimated perror iS too large, they abort.
Otherwise, Alice and Bob apply information rec-
onciliation (detailed in Section III-B) on the re-
maining s bits Az and Bz

6) Alice and Bob apply privacy amplification (de-
tailed in Section III-C) and obtain a shared secret
key of length ~ ((k — 1)/k — ht(Perror)) - S-

The main parameters are /N, whose logarithm is roughly the
bound in free energy of Eve; k, which determines the error
tolerance between Alice and Bob; ¢, the number of test bits
to estimate that error rate; and s, the length of the raw key
(before processing).

2Note that the security of the protocol can in fact be strengthened against
any eavesdropper with free energy N/4, as we show in [14].

Note that for any fixed pe;ror (as long as it is not trivially
1/2), Alice and Bob can choose a security parameter k for
which the protocol will be secure for that value of perror. That
is unlike, for example, the BB84 quantum-key-distribution
protocol, which only tolerates error rates less than 1/4 (any
more and Eve can intercept the whole quantum state).

The intuition. — As discussed in Section II, because she
is O(log N)-bounded in free energy, Eve cannot copy to her
memory the whole N-long string Y that she sends to Bob,
on which Bob will later base the raw key. Alice circumvents
this limitation by already knowing the raw-key positions at
the moment she sends X (X becomes, after Eve’s poten-
tial tampering, Y) and thus need not store more than an
O ((t + s)log N)-long segment of the N-long string. As in
quantum key distribution, Eve can force the protocol to abort.

B. Soundness analysis

1) Parameter estimation: We first estimate (using upper

bounds) between Alice and Bob the global error rate pe,ro, and
test ;

the non-tested rawkey error rate p. ;... The former quantity

is important for the privacy amplification analyzed in Sec-

tion III-C, while the second is needed to analyze information

reconciliation.

Proposition 1. Alice and Bob can accurately estimate the

error rate perror by sampling on the t test positions the error

test .
rate Perror-

_9g2
P (perror < péffér +5) >1—e ¢,

(6)
Proof. ptest is computed from the Hamming weight
W(Apesty) D Biresty)) = t(1 — piet,). Chernoff’s inequality
bounds perror- O

Proposition 2. Alice and Bob can accurately estimate pLest
test

from Perror-

Toot s-€ _9e2
P <alin s S5 ) 2 o)
Proof. We insert persor = (- ples +1-plise,) /(s +1) in Eq. 6
and isolate p/es! O

error*

2) Information reconciliation (error correction): Once they
have a good estimate of p’! | Alice and Bob achieve informa-
tion reconciliation by applying error correction on that unused
subset test of s bits.

Note that it is important that the established key be based
on Bob’s string, rather than on Alice’s, because the technique
using the thermodynamical no-cloning theorem of Section II
bounds the mutual information between Bob and Eve, not the
one between Alice and Eve (see Section III-C).

Proposition 3. For any non-trivial constant pl¢st =+ 1/2,
Alice and Bob can transform the samples A[m],B[@] into
the (not necessarily secret) keys K'y, K for which
1
P(Ky=Kp)>1-—.
n

®)



They can do so with w ~ hy(pl=L)) - s (the exact value is

given below) bits of authenticated public communication.

We present one standard construction to correct an arbitrary
error rate on the s bits of rawkey that were not used during
the parameter-estimation phase.

a) Asymptotically optimal protocol for information rec-
onciliation [21]::

Let w = [s - hy(pciie, +0') + 1l

1) Bob picks at random a hash function h : {0,1}* —
{0,1}* from a 2-universal family H and computes
h(B[teét])

2) Bob communicates h and h(DB;
authenticated public channel.

3) Alice computes

i ]) to Alice, using the

Ageg = argmin (w(@, Ay p(@)=h(Bzy)) -
2€{0,1}1en(®)
Here, w(,-) is the Hamming distance; §’ determines effi-

ciency and 7 is the security parameter.

Proof. We first count, in the uniform distribution, the smooth
number of strings with length s that contains approximately
test . Let M = {.27 c {0,1}s|ptest _ 6/ < pfpsf ( ) S

psuggr error error

plest + §'}; from the asymptotic equipartition property, we

have V&' > 0,

P (#M < 25'hb(pf§rtor+6/)) >1-2"90 9)

Because H is 2-universal, the probability of obtaining a
correct hash from a non-correct candidate in M is bounded
by 27". By the union bound, the protocol is therefore sound
except with probability at most 2% - #M, which is negl(n).

O

While the above ideal information-reconciliation proto-
col is optimal, it offers no (known) efficient way (in the
computational-complexity sense) for Alice to decode Bob’s
codeword. While we are in this work only concerned with
thermodynamic (rather than computational) efficiency, we
refer to [21], or to the theory of Shannon-optimal efficient
algebraic codes, such as convoluted codes, for asymptotically
ideal information-reconciliation protocols that are also com-
putationally efficient.

C. Security analysis

If the protocol does not abort, Eve has negligible informa-
tion about the key K at the end. This security resides on the
fact that even if Eve intercepts X (which was sent from Alice
to Bob) and replaces it with Y, she cannot keep roughly more
than a logarithmic fraction of the information about Y. Thus,
since the key is based on Y, Eve has limited knowledge about
it.

Formally, our starting point is the following inequality.
Lemma 3. If Bob has Y (which has length N) and Eve has
E (with bounded free-energy O(log N)), then

(Y|E) =N —O(log N) . (10)

Proof. If Eve were to guess Y with a certain probability p,
she could erase it with that probability p. However, p must be
less than 2~ N+OUog N) 55 a5 to not contradict the free-energy
assumption. O

We then use a property of classical information which was
evidenced by [22] and refined in [23], and to which we return
in Section IV.

Proposition 4 (Vadhan [23]). With very high probability,
the min-entropy is approximately conserved under random
sampling. Let rawkey be a random subset of s posmons we

have for all § > 0, that except with probability 2~ s6% log? 8)
92— Q(N)

Hoo(Y[rawkey]|E) > Lj\@ —5:9 (11)
:s—s-M—s%S. (12)

N

The next step is to go from (very) low information to
essentially no information. using privacy amplification. Privacy
amplification turns a long string about which the adversary has
potentially some knowledge into a shorter one about which the
adversary has essentially none.

In secret-key establishment, Eve’s partial information can
come from eavesdropping (and as shown, this quantity is
limited by her free energy) or from the public information
leaked by the information-reconciliation protocol, which is
easily characterized.

We use a straightforward sample-and-hash technique, in
which privacy amplification is realized in an information-
theoretically secure manner using 2-universal hashing.

Proposition 5. After privacy amplification, Kp is approxi-
mately of length ~ (1 — hy(Perror)) - S, and Eve has essentially
no knowledge about it.

Proof. Let w quantify the number of bits about B[test]
exchanged publicly during the information-reconciliation
(IR) protocol. We note that Hoo(Yjuuiey) [ EPR) <
Ho(Kp|EP*s*™R) — 1, hence we have

. O(log N)

Hoo (KB ‘EpOStIR) Z s N

—s-0—w (13)

except with probability 2~(s37108°8) | 9—Q(Né) Therefore,
taking m = s—s-o(lngN)—s-d—w—e guarantees after hashing
(e is the security parameter for the Leftover hash lemma; see

Lemma 2) information-theoretic security on those remaining
m bits. O

Note that for any fixed perror, the number of samples s can
be selected as to make m a positive quantity when the protocol
does not abort (as a result of too many errors). Also note that
the length N must not be too short.



IV. CRYPTOGRAPHY AS A LENS FOR PHYSICS

In this letter, we have presented a scheme for cryptographic
secret-key agreement secure under the sole assumption that
the adversary is limited in available work. The security proof
relies on the second law of thermodynamics; more explicitly,
the nexus between the physical and informational realms is
given by Landauer’s principle, stating that the erasure of
information has a price in terms of work that is then dissipated
in the form of heat to the environment. In order to carry
through the security proof, a no-cloning principle is derived
from Landauer’s. Specifically, this can be done in the realm
of classical physics, as we have shown in the present text.
Furthermore, a similar conclusion can also be made in the
quantum realm. This is based on results guaranteeing the
existence of condensers for min-entropy [24], [23].

It has become an established research program to attempt to
base physical theories on information axioms, e.g., quantum
theory on “secret-key agreement is possible” and “oblivious
transfer is impossible.” Let us first observe that in the classical
limited-energy scenario considered here, the second statement
is to be replaced by “oblivious transfer is possible” — as we
will show in subsequent work.

The spirit of this point of view is that information pro-
cessing — in this case cryptographic — tasks are used as a
“lens” for studying and differentiating physical theories. In this
sense, we ask: Is the implication from Landauer’s principle to
no-cloning generally possible, e.g., also in beyond-quantum
worlds? We argue that the answer is no: It does not forbid (a
weak form of) cloning, and thus these theories allow for no
key agreement either.

Specifically, in analogy to the nonlocal box introduced by
Popescu and Rohrlich [25], we could think of a model even
more contextual than QM. We present such a box, the (1-out-
of-n)-box; if it were to exist (for a sufficiently large n), it
would break the security of our scheme. Ironically, this box is
based on another cryptographic primitive: the aforementioned
oblivious transfer.

e The (1-out-of-n)-box can “encode” n bits.

« But only 1 of those bits can be retrieved from the (1-out-
of-n)-box (or alternatively, any binary predicate of those
bits). Once that bit is out, the box self-destroys.

e The cost in free energy to create an (1-out-of-n)-box is
kT 1In2 J/bit.

The box is highly contextual because while any bit (out of
n) can be retrieved, the act of measurement (extracting a
single bit) prevents further bits from being extracted. It is
straightforward to see that Landauer’s erasure cost of this
device is still kT'In2 J/bit (as it is the cost to erase the
unique bit that came out of the box before its self-destruction).
Landauer’s cost is, therefore, about information actualities
rather than information potentialities, it corresponds to the
number of bits that can be simultaneously retrieved, rather than
on the number of counter-factual bits that can be encoded. In
the classical and quantum worlds, these two quantities are,

however, and somewhat surprisingly, virtually equal — and
the security of our scheme depends on it.

An experimental test of the existence of these boxes could
come in the form of Alice and Bob carrying out our key-
agreement protocol — and Eve breaking it. From this, we
could conclude that unless Eve has exponential amounts of
free energy, these beyond-quantum boxes must exist: This
would be “information-retrieval contextuality,” of classical
instead of quantum nature: Quantum contextuality without
quantum, for short.
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