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Abstract We study bipartite games that arise in the context of nonlocality with

the help of graph theory. Our main results are alternate proofs that deciding whether

a no-communication classical winning strategy exists for certain games (called

forbidden-edge and covering games) is NP-complete, while the problem of decid-

ing if these games admit a non-signalling winning strategy is in P. We discuss rela-

tions between quantum winning strategies and orthogonality graphs. We also show

that every pseudo-telepathy game yields both a proof of the Bell-Kochen-Specker

theorem and an instance of a two-prover interactive proof system that is classically

sound, but that becomes unsound when provers use shared entanglement.

Keywords: Game Theory, Graph Theory, Nonlocality, Bell Theorems, Inter-

active Proof Systems

1 Introduction

There exist particular measurement scenarios on entangled particles that cannot

be simulated within a gedanken world in which the particles have predefined out-

comes to any measurement [5]. This phenomenon is nowadays called nonlocality.

Theoretical proofs of this fact are usually set up in the following paradigm: the

entangled particles (we shall restrict ourselves to the case of two particles since it

is the most studied case and the subject of this paper) are measured according to

a measurement chosen from a given set of measurements. The measurements are

timed in such a way that it is impossible for either particle to send a signal that

would influence the measurement outcome on the other. The probability distribu-
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tion of the joint outcomes is then studied. The purpose is to show that no local

realistic theory can reproduce this distribution.

Bipartite games are of particular interest in the study of quantum nonlocality.

We view the particles as players, the measurements as questions and the outcomes

as answers. A proof of nonlocality is then nothing more than showing that quantum

players—players that have access to quantum information—can fare better than

classical players, who do not have access to this resource.

Recently, the community has studied the amount of resources one needs to give

to classical players in order to have them on par with quantum players [10,15,21,

34,39,45]. The purpose is to help characterize the power of entanglement. This

line of thinking has led to many interesting results, such as “if quantum mechanics

were too nonlocal, communication complexity would collapse to a single bit for

any distributed Boolean function” [19,9] and “entanglement and nonlocality are

incomparable resources” [12]. However, the general question of whether a given

quantum probability distribution can be simulated by classical means in different

scenarios remains open.

In this paper, we introduce a novel approach to the study of nonlocality: graph

theory. Thanks to our new general framework for bipartite games, we give new

solutions to known results and also provide some new contributions. Our work

paves the way for future research in this general direction. Previous connections

between graph theory and nonlocality were established in [14,24].

We investigate bipartite games and study the cases in which the participants

are allowed 1) two-way communication, 2) one-way communication, 3) just local
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resources, 4) non-signalling resources, or 5) quantum resources. We also establish

links between these games and the Bell-Kochen-Specker theorem [6,30], as well

as with interactive proof systems [3,25].

In particular, we give alternate proofs that deciding whether a particular game

is winnable by classical players is NP-complete and deciding whether a particular

game is winnable by players sharing non-signalling resources is in P. The first

result was originally established by Uriel Feige and László Lovász [20], while the

second by Daniel Preda [43] and Ben Toner [44].

In Section 2, we formalize what we mean by bipartite games and introduce

the graph theory paradigm. We then study the different types of resources one can

give the players in Section 3. The links with the Bell-Kochen-Specker theorem and

with interactive proof systems are covered in Sections 4 and 5, respectively.

2 Bipartite Games

A bipartite game G = (X,Y,W ) is a set of inputs X = XA ×XB , a set of out-

puts Y = YA×YB and a relationW ⊆ X×Y . The relationW is called the winning

condition. We explain how such a game is played in Section 2.1. Given a bipartite

game G, we represent it as a bipartite graph GG = (V,E) with A = XA ×YA and

B = XB × YB being the classes of the bipartition, meaning that V is the disjoint

union ofA andB. There is an edge between xAyA ∈ A and xByB ∈ B if and only

if ((xA, xB), (yA, yB)) ∈ W . To distinguish vertices coming from class A from

those coming from class B, such an edge will be denoted (xAyA, xByB) even
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0 7→ 0 0 7→ 0

0 7→ 1 0 7→ 1

1 7→ 0 1 7→ 0

1 7→ 1 1 7→ 1

Fig. 1 GG1

0 7→ 0 0 7→ 0

0 7→ 1 0 7→ 1

1 7→ 0 1 7→ 0

1 7→ 1 1 7→ 1

Fig. 2 GG2

though, formally, edges in the graph are not oriented. This is our graph-theoretical

representation for bipartite games. We now give two examples.

Example 1 Game G1 is given by (X,Y,W ) where XA = XB = YA = YB =

{0, 1} with

((xA, xB), (yA, yB)) ∈W ⇔ yA ⊕ yB = xA ∧ xB .

The corresponding graph, GG1
, is given in Figure 1. Note that in order to em-

phasize the structure of the graph in relation to the game, we have labelled the

vertices according to the form xA 7→ yA and xB 7→ yB . Similarly, edges such as

(xAyA, xByB) are sometimes denoted (xA 7→ yA, xB 7→ yB). We shall refer to

game G1 in Section 3.5, as it is closely related to the nonlocal box [37], inspired

by the CHSH game [13,17].
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Example 2 Game G2 is given by (X,Y,W ) where XA = XB = YA = YB =

{0, 1} with the following edges:

(0 7→ 0, 0 7→ 1), (0 7→ 0, 1 7→ 0), (0 7→ 0, 1 7→ 1), (0 7→ 1, 0 7→ 0), (0 7→ 1, 0 7→ 1),

(0 7→ 1, 1 7→ 0), (1 7→ 0, 0 7→ 0), (1 7→ 0, 0 7→ 1), (1 7→ 0, 1 7→ 0), (1 7→ 0, 1 7→ 1),

(1 7→ 1, 0 7→ 0), (1 7→ 1, 1 7→ 0), (1 7→ 1, 1 7→ 1) .

The corresponding graph,GG2
, is given in Figure 2. The game G2 is closely linked

to the Hardy game [27], which we shall discuss in Section 3.5.

Given a bipartite game G and its corresponding graph GG, there is a natural

partition of each class A and B of the bipartition, which is induced by fixing an

element of either XA or XB . We refer to these as Alice’s natural partition (or the

natural partition of A),

PA = {{xAyA | yA ∈ YA} | xA ∈ XA}

and Bob’s natural partition (or the natural partition of B),

PB = {{xByB | yB ∈ YB} | xB ∈ XB} .

For instance, the game of Example 1 (Figure 1) has PA containing vertices in

class A: PA = {{0 7→ 0, 0 7→ 1}, {1 7→ 0, 1 7→ 1}} and PB containing vertices in

class B: PB = {{0 7→ 0, 0 7→ 1}, {1 7→ 0, 1 7→ 1}} .

(Note: Despite appearances, PA and PB are distinct in this example because recall

that the set V of vertices is the disjoint union of classes A and B.)
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2.1 Bipartite games as cooperative games

We study bipartite games as cooperative games in two scenarios: the forbidden-

edge games and the covering games. In each round of game G, Alice and Bob are

individually presented with a question, xA ∈ XA for Alice and xB ∈ XB for Bob.

They must produce an answer chosen in yA ∈ YA for Alice and yB ∈ YB for Bob.

Alice and Bob win this round of G if and only if (xAyA, xByB) ∈ E (in which

case, we say that the edge E is covered). Whether or not Alice and Bob have a

winning strategy for a game depends on the type of game they are playing:

Definition 1 In a forbidden-edge game, a winning strategy for Alice and Bob is

such that they win each round.

The case of a covering game is more complicated: to each covering game G,

we associate a probability p(G), which, intuitively, is used to formalize the fact

that each possible answer must be given, in turn, with probability at least p(G):

Definition 2 In a covering game, a winning strategy for Alice and Bob is such that

they win each round and for a fixed round, each edge is covered with probability

at least p(G).

Players are allowed resources: in all cases, at the onset of the game, they can dis-

cuss a common strategy and flip an unlimited number of coins. If these are the only

allowed resources, we say that the strategy is classical. In some cases, we also al-

low the players to establish shared quantum entanglement. During the execution

of the game, we may also allow communication or the use of non-signalling prob-

ability distributions. A forbidden-edge game is called a pseudo-telepathy game if
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Alice and Bob have a winning strategy using shared entanglement, yet no such

classical strategy exists, while a covering game with the same features is called a

Bell theorem without inequalities (BTWI), a term coined in [26]. For a discussion

on the differences between these types of games, see [35].

Bell’s theorem [5], which Henry Stapp designated “the most profound discov-

eries of science” [42] states that quantum mechanics is not a local realistic theory.

There is a direct connection between Bell’s theorem, pseudo-telepathy and BTWI

due to the fact that any such game is a proof of Bell’s theorem. This is easily seen

by the fact that Alice and Bob (who are unable to communicate, thus are restricted

to act in a local realistic world to anyone who doesn’t believe in quantum mechan-

ics) have a quantum winning strategy, yet they do not have a classical winning

strategy.

In the next section, we study winning strategies according to the available

shared resources. We then make connections between pseudo-telepathy games,

the Bell-Kochen-Specker theorem (Section 4) and multi-prover interactive proofs

(Section 5).

3 Bipartite games and resources

In this section, we give necessary and sufficient conditions for forbidden-edge as

well as covering games to exhibit a winning strategy depending on the available

resources. We also give a necessary and sufficient condition for a game to exhibit

a winning strategy, regardless of the resources available to Alice and Bob. We start

with the latter.
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3.1 Winnable games

A certain class of bipartite games is rather uninteresting for our purposes; these are

the games that do not have a winning strategy, no matter the resources that Alice

and Bob share (even with unlimited communication!). Intuitively, a forbidden-

edge game or a covering-game has a winning strategy (with unlimited resources)

if and only if there is a way to win each round (and also, for a covering game, each

possible answer must be given with a minimum probability). A game that has a

winning strategy with unlimited resources is called winnable.

Theorem 1 Let G be a bipartite game (either a forbidden-edge game or a covering

game) with bipartite graph GG = (V,E), whose classes are A and B, and let PA

be the natural partition of A and PB be the natural partition of B. Then G is

winnable if and only if each subgraph induced by an element of PA and an element

of PB has at least one edge. In addition, in the case of a covering game, the number

of edges in the induced subgraph must be at most 1/p(G).

Proof If G is a forbidden-edge game, then it is winnable if and only if Alice and

Bob (who have access to unlimited resources) can win every round. But this is

possible if and only if there is at least one answer for each possible question that

causes Alice and Bob to win. This is what is formally stated in the lemma. If G

is a covering game, then in each round, each possible edge must be covered with

probability at least p(G), which is possible if and only if there are at most 1/p(G)

edges to cover. ut
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Theorem 2 The problem of deciding if a game (forbidden-edge or covering) is

winnable is in P.

Proof As stated in Theorem 1, at most, we need to count the number of edges in

each bipartite graph induced by a pair of elements, one in PA and one in PB . This

can be done in O(n3), where n is the number of vertices. ut

3.2 Two-way communication

The first resource that one probably thinks of is communication. What type of

game can players win if they are allowed to communicate? If two-way communi-

cation is allowed, the results are simple.

Theorem 3 Let G be a bipartite game (either a forbidden-edge game or a covering

game) with bipartite graph GG = (V,E), whose classes are A and B, and let PA

be the natural partition of A and PB be the natural partition of B. Then G is

winnable with two-way communication if and only if it is a winnable game.

Proof The strategy for a winnable game is easy. Alice and Bob discuss which

questions they receive and jointly decide which edge they want to cover. The

other direction of the proof is even simpler. If a game is not winnable, then it

is of course not winnable with two-way communication, since winnable has been

defined independently of resources. ut

Corollary 1 The problem of deciding if a game (forbidden-edge or covering) is

winnable with two-way communication is in P.
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3.3 One-way communication

A more interesting scenario is to allow communication, but to restrict it to being

one-way only.

Theorem 4 Let G be a forbidden-edge game with bipartite graph GG = (V,E),

whose classes are A and B, and let PA be the natural partition of A and PB be

the natural partition of B. Then G is winnable with one way communication from

Alice to Bob (the case of one way communication from Bob to Alice is similar)

if and only if the following is possible: for each element of PA, it must be possible

to choose a vertex v ∈ PA and a subset S of B containing exactly one element

of each element of PB such that the subgraph induced by {v} ∪ S is a complete

bipartite graph. (Said otherwise, there is an edge (v, w) ∈ E for each w ∈ S.)

Proof The strategy is simple: Alice tells Bob which question she received and

which answer she gave (the answer corresponding to v in our case). Bob can

then always choose an allowed output (the answer corresponding to the appro-

priate element of S in our case), since Alice’s choice was made for precisely that.

To complete the proof, one only has to realize that if no such construction exists,

then Alice’s answer must depend on Bob’s question. Therefore, making a one-way

communication scheme from Alice to Bob impossible. ut

Theorem 5 Let G be a covering bipartite game with bipartite graphGG = (V,E),

whose classes are A and B, and let PA be the natural partition of A and PB be

the natural partition ofB. Then G is winnable with one way communication if and

only if it is winnable as a forbidden-edge game, all edges of GG are covered by
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at least one induced bipartite graph as in Theorem 4, and every induced subgraph

given by an element of PA and an element of PB has at most 1/p(G) edges.

Proof Alice just chooses at random amongst the vertices of her partition that have

degree at least 1 and tells Bob which one she has chosen. Bob then selects one

adjacent vertex at random. This strategy spans the whole graph and ensures that

each edge is covered with probability at least p(G). If a vertex on Alice’s side

doesn’t have the requirements stated in the Theorem, she cannot select it since

Bob could receive a question that would put him in an unconnected (to Alice’s

vertex) partition. ut

Theorem 6 The problem of deciding if a game (forbidden-edge or covering) is

winnable with one-way communication is in P.

Proof As stated in Theorems 4 and 5, we only need to search for the specific v’s

and corresponding S’s. This can be done in polynomial time. ut

3.4 No communication

Definition 3 Let G be a bipartite game with bipartite graph GG = (V,E), whose

classes are A and B. Furthermore, let PA be the natural partition of A and PB

the natural partition of B, and let S ⊆ V contain exactly one element of each of

the elements of PA and of PB . Then S is called a local connection of GG.

Theorem 7 A forbidden-edge game GG = (V,E) admits a no-communication

classical winning strategy if and only if there exists a local connection S of GG

such that the subgraph induced by S is a complete bipartite graph.
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Proof The most general deterministic strategy for Alice that does not involve any

communication is for her to select ahead of time which element in YA to associate

with each element in XA. Thus, in terms of the graph GG, she selects one vertex

in each element of PA. Bob’s most general strategy is the same. A deterministic

strategy for G therefore corresponds to a local connection of GG.

A probabilistic strategy for Alice and Bob (a strategy that involves random-

ness), can be seen as a probability distribution over a set of deterministic strate-

gies. Therefore, since a classical winning strategy requires that Alice and Bob win

every round with probability 1, in their probabilistic strategy, every deterministic

strategy that is chosen with non-zero probability must be a winning strategy.

To complete the proof, note that it is necessary and sufficient that a local con-

nection S induce a complete bipartite graph in order for S to correspond to a

deterministic winning strategy. ut

It is interesting to note that if G does not have such a local connection, then no

classical strategy can win with probability greater than 1 − 1/(|XA||XB |). This

difference can be amplified by a polynomial parallel repetition [38].

We now give two applications of Theorem 7, the first refers to the graph GG1

of Example 1 (Figure 1). Since there does not exist a local connection that induces

a subgraph that is isomorphic to K2,2, we conclude that in terms of a forbidden-

edge game, there is no classical winning strategy for G1. Our second example is

illustrated by Figure 3, where we have given a classical winning strategy for the

forbidden-edge version of G2 as in Example 2. In Figure 3, the circled vertices are

the local connection of GG2
; the induced subgraph is given by thick edges.
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0 7→ 0 0 7→ 0

0 7→ 1 0 7→ 1

1 7→ 0 1 7→ 0

1 7→ 1 1 7→ 1

Fig. 3 GG2
: winning strategy for the

forbidden-edge game is given by the cir-

cled vertices, the local connection of GG2
;

the induced subgraph is given by thick

edges.

Fig. 4 Edge construction between ele-

ments of partitions that originate from the

same clause.

Theorem 8 A covering game GG = (V,E) admits a classical winning strategy

if and only if there exists a set of local connections of GG, S1, S2, . . . Sn ⊆ V

such that the subgraph induced by each Si (i = 1 . . . n) is a complete bipar-

tite graph and
⋃n

i=1 Si = V. Furthermore, we must be able to choose prob-

abilities p1, p2, . . . , pn such that
∑n

i=1 pi = 1 and for every edge e, we have

∑
i∈I pi ≥ p(G), where I is the set of indices of the local connections that cover e.

.

Proof If there are such Si, then choosing Si with probability pi guarantees a win-

ning strategy which covers every edge with probability at least p(G). On the other

hand, if we cannot fully cover E, or if we cannot assign the probabilities pi, then

there is no strategy that can cover all edges with probability at least p(G) . ut

We now give an alternative proof to the one given in [20] for the following:
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Theorem 9 Let FORB-EDGE-CLASSICAL(G) be the problem of deciding if the

forbidden-edge game G has a no-communication classical winning strategy. Then

FORB-EDGE-CLASSICAL(G) is NP-complete.

Proof By Theorem 7, FORB-EDGE-CLASSICAL is the same as determining if

there exists a local connection S of GG such that the subgraph induced by S is a

complete bipartite graph. Consider the bipartite complement, G of GG. The prob-

lem now is to find an independent set of G with one vertex per element of PA and

PB . Call this PARTITIONED-INDEPENDENT-SET.

To prove that PARTITIONED-INDEPENDENT-SET is NP-complete, first note

that it is trivially in NP. We now transform 3-SAT to PARTITIONED-INDEPENDENT-

SET. Let U = {U1, U2, . . . , Un} be a set of variables and C = {C1, C2, . . . , Cm}

a set of clauses making up an arbitrary instance of 3-SAT. We shall construct a

bipartite graph G such that G is in PARTITIONED-INDEPENDENT-SET if and only

if C is in 3-SAT.

In each class A and B of G, we place a vertex for each literal of each clause.

The clauses form the elements of each partition. Now, we add edges according to:

1. Add an edge between each pair of vertices, one fromA and one fromB, which

represent the same variable, with exactly one representing the negated form.

2. For each pair of elements of partitions (one in A, one in B) that originate from

the same clause, add edges according to Figure 4.

Now, we must show that G is in PARTITIONED-INDEPENDENT-SET if and

only if C is satisfiable. Suppose t : U → {True,False} is a truth assignment

satisfying C. For each clause, pick a literal that is True under t. This forms
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a Partitioned-Independent-Set in G. Conversely, suppose G ∈ PARTITIONED-

INDEPENDENT-SET. Then assigning the value True to the literals forming a

Partitioned-Independent-Set is a truth assignment satisfying C. This transforma-

tion can be done in polynomial time. ut

In sharp contrast with Theorem 9, the problem of deciding if there exists a

no-communication winning strategy becomes easy when we restrict ourselves to

binary games.

Definition 4 A binary game G = (X,Y,W ) is a bipartite game with YA = YB =

{0, 1}.

Theorem 10 Let BINARY-FORB-EDGE-CLASSICAL(G) be the problem of decid-

ing if the binary forbidden-edge game G has a no-communication classical win-

ning strategy. Then BINARY-FORB-EDGE-CLASSICAL(G) is in P .

Proof We transform an instance of BINARY-FORB-EDGE-CLASSICAL into an in-

stance of 2-SAT, which can be solved efficiently. First, take the graph GG, and

label the vertices in class A with distinct values. A vertex in class B is assigned

label x if it is not adjacent to the vertex with label x in class A (a vertex in class B

can have many labels). Create an instance of 2-SAT by adding all clauses that are

formed with pairs of labels corresponding to vertices in the same element of each

partition. Then this instance of 2-SAT is satisfiable if and only if there is a local

connection in GG that induces a complete bipartite graph, that is, if and only if

there is a no-communication classical winning strategy for G . ut
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3.5 Non-signalling winning strategies

Nonlocality is the study of correlations that arise from theories that are more pow-

erful than classical mechanics. Bell inequalities and pseudo-telepathy are exam-

ples of tasks involving nonlocal correlations. While asking about correlations

that are “stronger” than those of quantum mechanics, Sandu Popescu and Daniel

Rohrlich [37] defined the PR-Box as an imaginary device that has an input-output

port at Alice’s end and another one at Bob’s end, even though Alice and Bob can

be space-like separated. Whenever Alice feeds a bit into her input port, she gets a

uniformly distributed random output bit, locally uncorrelated with anything else,

including her own input bit. The same applies to Bob. There is, however, a corre-

lation between the pairs of inputs and possible outputs: the parity of the outputs is

equal to the logical and of the inputs. This device does not allow faster-than-light

communication: this property is called non-signalling. The characteristics of the

PR-Box correspond exactly to the winning conditionW of Example 1. It is easy to

see that the PR-Box can be used to implement a winning strategy for the game G1

given in the example. This is true whether we interpret G1 as a forbidden-edge

game or as a covering game. We now formalize the concepts of non-signalling

strategies.

A bipartite box is a virtual device that has two input-output ports: port A ac-

cepts input xA ∈ XA and outputs yA ∈ YA, while port B accepts input xB ∈ XB

and outputs yB ∈ YB . The box is non-signalling if it cannot be used to commu-

nicate information from port A to port B or vice versa. A necessary and sufficient
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condition for this to be verified is for both of the following to hold:

∀xA ∈ XA ∀yA ∈ YA ∃c ∈ [0, 1]∀xB ∈ XB : P (yA|xA, xB) = c (1)

∀xB ∈ XB ∀yB ∈ YB ∃c ∈ [0, 1]∀xA ∈ XA : P (yB |xA, xB) = c . (2)

Thus, a non-signalling bipartite box implements a strategy for a bipartite game;

we call such a strategy a non-signalling strategy. A consequence of Equations (1)

and (2) is that a non-signalling bipartite box can be implemented as an asyn-

chronous box: when an input is accepted, the box immediately gives an output

at the same end, according to the given probability distribution. We say that Al-

ice and Bob have a non-signalling winning strategy for a bipartite game if they

have a winning strategy that can be implemented as a non-signalling bipartite box.

Special cases of non-signalling winning strategies are no-communication winning

strategies (Section 3.4) and quantum winning strategies (Section 3.6).

We now characterize a non-signalling winning strategy for bipartite game G in

terms of the graph GG.

Definition 5 Let G be a bipartite game with bipartite graph GG = (V,E), whose

classes are A and B. Furthermore, let PA be the natural partition of A and PB

the natural partition of B.

Then a local connection S of GG is called a non-signalling connection of GG

if the following hold:

1. each vertex in S from A is adjacent to at least one vertex in each element

of PB;
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2. each vertex in S from B is adjacent to at least one vertex in each element

of PA;

3. there exists a weight function w on all e ∈ E such that 0 ≤ w(e) ≤ 1 and:

(a) for each induced subgraph S ′ of S given by a round of the game,
∑

e∈S′ w(e) = 1;

(b) for each v ∈ S ∩ A, for each pB ∈ PB , there exists a constant c such that

∑
x∈pB

w(vx) = c;

(c) for each v ∈ S ∩ B, for each pA ∈ PA, there exists a constant c such that

∑
x∈pA

w(vx) = c .

Theorem 11 A forbidden-edge gameG = (V,E) admits a non-signalling winning

strategy if and only if it contains a non-signalling connection.

Proof A non-signalling strategy is implemented by a non-signalling bipartite box.

This box associates with every output pair a certain (definite) probability given a

certain input pair P (yA, yB |xA, xB), such that Equations (1) and (2) are fulfilled

and such that an output is always given. The weight of an edge is now taken to

be exactly the (non-zero) probability of the output pair defined by its end points,

given the corresponding questions were asked. The fact that an output is always

given corresponds to the condition 3a; Equations (1) and (2) assure that 3b and 3c

are verified. On the other hand, from a non-signalling connection we can always

build a non-signalling bipartite box by defining the probability of an output pair

to have exactly the value of the weight in the non-signalling connection associated

with the edge joining the two. ut
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0 7→ 0 0 7→ 0

0 7→ 1 0 7→ 1

1 7→ 0 1 7→ 0

1 7→ 1 1 7→ 1

1/12

1/6

1/3

2/3

3/4

Fig. 5 GG2
: with edge weights giving a NS-winning strategy. The non-signalling connec-

tion is the entire vertex-set, V. Probabilities are given by the legend at the right-hand side.

Theorem 12 A covering game G = (V,E) admits a non-signalling winning strat-

egy of probability p(G) if and only if it admits a non-signalling connection with

S = V and w(e) ≥ p(G) ∀e ∈ E .

Proof We construct the non-signalling strategy the same way as in the case of the

forbidden-edge game, with the only difference that all answer pairs must possibly

be given. That means that they must all be part of the bipartite box and therefore of

the non-signalling connection. As the weight associated with an edge gives exactly

the probability of this answer pair, given the corresponding questions were asked,

we have p = mine(w). ut

As an application of Theorem 11, we give in Figure 5 a non-signalling win-

ning strategy (given by a non-signalling connection) for the game in Example 2

(probabilities are given by the legend). This non-signalling winning strategy can

be implemented as a quantum winning strategy [27].

The following Lemma was already known [4], but we give here a surprisingly

simple proof that does not rely on extremal points of polytopes.
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0 7→ 0 0 7→ 0

0 7→ 1 0 7→ 1

1 7→ 0 1 7→ 0

1 7→ 1 1 7→ 1

required

forbidden

Fig. 6 Unique, up to relabelling, minimal graph that cannot have a classical winning strat-

egy.

0 7→ 0 0 7→ 0

0 7→ 1 0 7→ 1

1 7→ 0 1 7→ 0

1 7→ 1 1 7→ 1

required

forbidden

Fig. 7 Unique, up to relabelling, complete non-signalling graph that cannot have a classical

winning strategy.

Lemma 1 The PR-Box is the only non-signalling winning strategy for any 2-input,

2-output forbidden-edge game that is winnable and has no no-communication win-

ning strategy.

Proof We construct the most general non-signalling winning strategy for such a

game. Since the game is winnable, by Theorem 1, it must contain certain edges,

which we have indicated as full lines in Figure 6. By Theorem 7, adding any of the

forbidden edges (dotted lines) in Figure 6 would yield a no-communication win-

ning strategy. By the fact that the strategy must be non-signalling (Theorem 11),

we get more required edges as given in Figure 7 (the additional forbidden edges
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again come from Theorem 7). Now, we assign weights to the edges of the graph; by

the non-signalling property (Theorem 11), the only possibility is for ω(e) = 1/2

for all edges. ut

As a corollary, since the PR-Box cannot be reproduced by quantum mechanics,

we see that there is no bipartite pseudo-telepathy game with 2 inputs and 2 out-

puts each. This was already known [11,22], however this proof is less geometric.

Note that there is a 2-input, 2-output BTWI game due to Lucien Hardy [27], see

Figure 2, and that, modulo different values for p(G), this is the only BTWI game

that we know!

We now give an alternative proof to a known result [43,44].

Theorem 13 Let FORB-EDGE-NS(G) be the problem of deciding if the forbidden-

edge game G has a non-signalling winning strategy. Then FORB-EDGE-NS(G) is

in P.

Proof Let us first note, that a forbidden-edge game G contains a non-signalling

connection if and only if there exists a weight function w according to the defi-

nition of a non-signalling connection on the whole graph GG. The non-signalling

connection is then given by excluding all edges with weight w(e) = 0 and all

unconnected vertices. The condition
∑

x∈pA,y∈pB
w(xy) = 1 assures that the

non-signalling connection defined this way contains at least one element of each

of the elements of PA and of PB . The fact that for every remaining v ∈ A,

∑
x∈pB

w(vx) = c 6= 0 ∀pB ∈ PB shows that v is adjacent to at least one

vertex in each element of PB . From a similar argument every remaining vertex

from B is adjacent to at least one vertex in each element of PA. On the other hand,
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we can trivially extend the weight function of a non-signalling connection on the

whole graph by assigning all remaining edges w = 0. It is therefore enough to

answer the question whether the whole graph admits a weight function w. There

are only linear constraints on w and we can write them as A · −→w =
−→
b , where the

weights of all edges are now written in the vector −→w and with A some matrix and

−→
b some vector. We now have to decide: is there a −→w ≥ 0, such that A · −→w =

−→
b ?

According to Farkas’ Lemma, a system A · −→w =
−→
b , −→w ≥ 0 is feasible if and

only if there does not exist a −→y such that AT · −→y ≥ 0 and
−→
b T · −→y < 0. But

this is exactly a linear programming problem. So we can use any polynomial-time

algorithm to minimize the function
−→
b T ·−→y subject to the constraints AT ·−→y ≥ 0.

The forbidden-edge game G has a non-signalling winning strategy if and only if

the minimum is non-negative. ut

Corollary 2 Let COV-NS(G, p) be the problem of deciding if the covering game G

with probability p has a non-signalling winning strategy. Then COV-NS(G,p) is in P.

Proof We have to solve the same linear equation A · −→w =
−→
b as in the case of the

covering game, but with the additional constraints −→w ≥ −→p . This corresponds to

answering the question whether there is a −→w ≥ 0, such thatA′ ·−→w ≥
−→
b′ , whereA′

now also contains the constraints −→w ≥ −→p and the equality constraints were turned

into two inequalities. By introducing slack variables we can turn the inequality

back into an equality and then proceed as above using Farka’s Lemma. ut
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3.6 Quantum winning strategies

If Alice and Bob share an (entangled) quantum state, they can both perform a

measurement on their part of the quantum system and give an answer determined

by their measurement outcome. This represents a strategy for a bipartite game,

which we call a quantum strategy. We say that Alice and Bob have a quantum

winning strategy for a bipartite game if they have a winning strategy that can be

implemented by a quantum strategy. It is clear that any quantum strategy also

defines a non-signalling strategy, as Bob cannot find out from his measurement

result what kind of measurement Alice has performed and vice versa. However,

while there exists a non-signalling winning strategy for the game G1 (both as a

forbidden-edge game and covering game), there does not exist a quantum winning

strategy [16]. Also, any classical strategy can be implemented using a quantum

system and therefore any game that admits a classical winning strategy also admits

a quantum winning strategy. On the other hand, there exist bipartite games that

admit a quantum winning strategy but do not admit a classical winning strategy.

We now link the quantum winning strategies with the graph GG.

Definition 6 Let G be a bipartite game with bipartite graph GG = (V,E), whose

classes are A and B. Furthermore, let PA be the natural partition of A and PB be

the natural partition of B. Then a quantum strategy is a vector |ψ〉 ∈ C
mn and an

association of a Hermitian operator Pa ∈Mm×m(C) with each vertex a ∈ A and

Pb ∈Mn×n(C) with each vertex b ∈ B such that:

1. if a, a′ ∈ pa ∈ PA and a 6= a′, then PaPa′ = 0

2. if b, b′ ∈ pB ∈ PB and b 6= b′, then PbPb′ = 0
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3.
∑

a∈pA
Pa = 1m×m ∀pA ∈ PA

4.
∑

b∈pB
Pb = 1n×n ∀pB ∈ PB

5. (a, b) /∈ E ⇒ 〈Ψ |(Pa ⊗ 1HB
)(1HA

⊗ Pb)|Ψ〉 = 0 .

Definition 7 LetG(V,E) be a graph andW an inner product space over a field F .

An orthogonal representation of G(V,E) in W is a map f : V → W of every

vertex to a vector inW , such that the vectors associated with nonadjacent vertices

vi and vj satisfy 〈f(vi), f(vj)〉 = 0 [32]. If furthermore all vectors have unit

length, this is called an orthonormal representation [31,32].

Theorem 14 A quantum strategy for a forbidden-edge game implies an associa-

tion of every vertex of the graph GG = (V,E) with vectors ∈ C
mn, such that

for each subgraph S′ of G induced by a round of the game these vectors form

an orthogonal representation of S ′ in C
m·n with the usual inner product. In ad-

dition, the sum of the vectors associated with one question gives the state vector.

Furthermore, if no answer has probability zero, this gives rise to an orthonormal

representation of S′.

Proof We just associate with every vertex a ∈ A the vector (Pa ⊗ 1HB
)|Ψ〉 and

with every vertex b ∈ B, the vector (1HA
⊗ Pb)|Ψ〉. Because of condition (5),

either of the vectors is zero or they are orthogonal; but this is exactly the definition

of an orthogonal representation [32]. If we take the sum of all vectors associated

with one question

∑

a∈pA

((Pa ⊗ 1HB
)|Ψ〉) = (

∑

a∈pA

Pa ⊗ 1HB
)|Ψ〉 = (1HA

⊗ 1HB
)|Ψ〉 = |Ψ〉 ,
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we obtain the state vector. Finally, the probability of an answer a, given the corre-

sponding question is asked, is given by

∑

b∈pB

〈Ψ |(Pa ⊗ 1HB
)(1HA

⊗ Pb)|Ψ〉 = 〈Ψ |(Pa ⊗ 1HB
)(1HA

⊗ 1HB
)|Ψ〉

= 〈Ψ |(Pa ⊗ 1HB
)|Ψ〉

which is zero if and only if (Pa ⊗ 1HB
)|Ψ〉 is zero. Therefore, if no answer has

probability zero, then none of the above defined vector is the zero-vector. There-

fore it can be normalized. Associating the vector
(Pa⊗1HB

)|Ψ〉√
〈Ψ |Pa⊗1HB

|Ψ〉
with the vertex

a ∈ A and similarly for Bob’s side therefore gives us an orthonormal representa-

tion for every subgraph induced by a round of the game. ut

Let us note that if some answers have zero probability, we can obtain an or-

thonormal representation of the graph changed the following way: add a vertex

with which we associate the state vector. All answers having non-zero probability

are connected with this vertex, while all answers having zero probability are not.

All answers having zero probability are connected with all answers on the other

side. Now we obtain an orthonormal representation of every induced subgraph

given by a round of the game and the “state vertex” by associating an arbitrary

vector orthogonal to the state-vector with answers with zero probability and the

same vector as before to answers with non-zero probability. Finally, this also gives

us an orthonormal representation of the graph associated with the whole game, if

we additionally connect all answers on Alice’s side belonging to different ques-

tions and similarly on Bob’s side.
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4 Links with the Bell-Kochen-Specker theorem

It is well known that realism is incompatible with non-contextuality [6,23,30,41].

Briefly stated, non-contextuality is the principle according to which the probability

of a given outcome in a projective measurement does not depend on the choice of

the other orthogonal outcomes used to define that measurement. The Bell-Kochen-

Specker theorem states that any realistic theory that attempts to mimic quantum

mechanics has to be contextual, while quantum mechanics is not.

Kochen and Specker’s original proof of the theorem was given as a construc-

tion with as a finite set of vectors in R
3, satisfying a certain non-colourability prop-

erty. Since then, numerous improvements and modifications on this construction

have been proposed [36]. It has also been shown that any Kochen-Specken con-

struction can be turned into a pseudo-telepathy game [1,18,28,40]. In [40], a weak

converse of this result was proved: any two-party pseudo-telepathy game in which

there exists a quantum winning strategy such that Alice and Bob share a maxi-

mally entangled state (of any dimension) and only make projective measurements

(no POVMs, no extra ancillary system), can be turned into a Bell-Kochen-Specker

construction.

But there is no reason to restrict proofs of the Bell-Kochen-Specker theorem

to those resembling the Kochen-Specker construction. This was already observed

by N. David Mermin [33] when he gave a very simple proof of the Bell-Kochen-

Specker theorem, based on what would be later called the magic square [1,2,8,

18]. We now show the following:
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Theorem 15 Any pseudo-telepathy game is a proof that any realistic description

of quantum mechanics has to be contextual.

Proof A quantum winning strategy for a pseudo-telepathy game consists of a

shared entangled state |ψ〉 and for each of Alice’s question xA ∈ XA, a mea-

surement MxA
, and for each of Bobs’s questions xB ∈ XB , a measurement MxB

.

Let MA be the set of possible measurements for Alice and MB be the set of possi-

ble measurements for Bob. We can refer to these as inputs or measurements inter-

changeably. We now consider Alice and Bob as a single entity. Suppose that we

start with the state |ψ〉 and choose to apply a measurement in MA and a measure-

ment in MB . Since there is no classical winning strategy (that does not involve

communication for the two parties, Alice and Bob) then there is no way to as-

sign outcomes to all of the measurements in MA such that the outcomes do not

depend on the measurement chosen for MB and such that the condition W is al-

ways satisfied. Hence, the output to measurement MA depends on the context in

which it is measured. However, the probabilities given by quantum mechanics for

each individual output to be produced on a measurement MA does not depend

on the choice of measurement MB . In this sense, quantum mechanics is said to

be non-contextual, while any local realistic theory that attempts to mimic quan-

tum mechanics has to be contextual. This argument captures the essence of the

Bell-Kochen-Specker theorem. ut
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5 Links with two-prover interactive proofs

We now further establish a link between pseudo-telepathy games and two-prover

interactive proof systems [7] by showing that every pseudo-telepathy game is an in-

stance of a multi-prover interactive proof system that is classically sound, but that

becomes unsound when the provers use shared entanglement. Our work follows

that of Richard Cleve, Peter Høyer, Ben Toner and John Watrous [18] who have

identified a series of bipartite games, including some pseudo-telepathy games, for

which players that share entanglement have an advantage over those that do not.

They also showed that some of these games can be converted to “natural two-

prover interactive proof systems that are classically sound but become unsound

when provers may employ quantum strategies”. See also related work [29].

We call our interactive proof system the complete bipartite local connection

system, which is played on a bipartite graphGwithXA being a partition of classA

and XB a partition of class B. The verifier gives Alice xA ∈ XA and Bob xB ∈

XB , each chosen uniformly at random. Alice and Bob each respond with yA ∈ xA

and yB ∈ xB , respectively. The requirement is that there exists an edge (yA, yB)

in G. If G has a local connection that induces a complete bipartite graph, then the

provers can satisfy the verifier by basing their answers on such a local connection.

If G does not have such a local connection, then no classical strategy can win with

probability greater than 1 − 1/(|XA||XB |). This difference can also be amplified

by a polynomial parallel repetition.

The proof system is broken in the case of entangled provers. This is easy to see

by considering the graph associated to any pseudo-telepathy game.
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A natural question to ask now is whether or not every instance of our inter-

active proof system is broken by entangled provers. The answer is no, because

there are instances of this proof system that are sound even against provers that are

allowed non-signalling correlations. These correspond to the bipartite forbidden-

edge games that do not admit a non-signalling winning strategy. This makes the

transformation of a proof system into a graph interesting, since such a characteris-

tic can be straightforwardly verified in our setting.

6 Conclusion and discussion

We have introduced new tools to study bipartite games, tools coming from graph

theory. In this new paradigm, many characteristics of bipartite games become

obvious and lead to elegant proofs. We rediscovered interesting results with our

technique, for example the complexity of determining whether there exists a non-

signalling or a no-communication winning strategy for a bipartite game, the fact

that the PR-Box is the only non-local box for binary inputs and outputs, and that

there is no pseudo-telepathy game for binary inputs. Strong links with the Bell-

Kochen-Specker theorem and interactive proofs were underlined.

It is interesting to note that our study of the complexity of the problems was

done in relevance to the number of vertices in the graphs that represent the game.

Since the number of vertices is equal to the number of questions times the number

of possible answers, our complexity results holds for both the number of questions

and the number of possible answers.
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However, there is still much more to find. The main open question of interest is

concerning the complexity of determining whether there exists a quantum strategy

to a bipartite game. A related question to our work, for which our results might

help to find clues to the answer, is whether POVMs add any power in unraveling

the nonlocality out of entanglement.
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nonlocality in any world in which communication complexity is not trivial. Physical

Review Letters, 96:250401, 2006.

10. G. Brassard, R. Cleve, and A. Tapp. Cost of exactly simulating quantum entanglement

with classical communication. Physical Review Letters, 83:1874–1878, 1999.
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