On Non-Locality Distillation

Dejan D. Dukaric, ETH Zurich

joint work with

Manuel Forster, ETH Zurich Severin Winkler, ETH Zurich Stefan Wolf, ETH Zurich

QIP, January 16, 2009, Santa Fe

Non-Signalling Systems

A system P(a, b|x, y) is

- ... local if it can be simulated with shared randomness
- ... non-signalling if

$$\sum_{b \in \{0,1\}} P(a,b|x,y) = P(a|x), \forall a, x, y \in \{0,1\}$$

$$\sum_{a \in \{0,1\}} P(a,b|x,y) = P(b|y), \forall b, x, y \in \{0,1\}$$

Non-locality of
$$P(a,b|x,y)$$
 : $NL[P]:=\sum_{x,y\in\{0,1\}}\frac{1}{4}\cdot\Pr[x\wedge y=A\oplus B]$

"how well Alice and Bob can compute $x \wedge y = a \oplus b$ using NL[P] := P(a,b|x,y), local operations and shared randomness, given the input is uniformly distributed"

Non-locality of
$$P(a,b|x,y)$$
 : $NL[P]:=\sum_{x,y\in\{0,1\}}\frac{1}{4}\cdot\Pr[x\wedge y=A\oplus B]$

 $P \text{ non-local} \Leftrightarrow NL[P] > 3/4$

(Bell, 1964 / CHSH, 1969)

Non-locality of
$$P(a,b|x,y)$$
 : $NL[P]:=\sum_{x,y\in\{0,1\}}\frac{1}{4}\cdot\Pr[x\wedge y=A\oplus B]$

 $P \text{ non-local} \Leftrightarrow NL[P] > 3/4$

(Bell, 1964 / CHSH, 1969)

Achieving NL[P] = 3/4 locally:

- Alice sets a=0 independent of input
- ullet Bob sets b=0 independent of input
- They compute with certainty the right relation ($x\wedge y=a\oplus b$) for inputs x=0,y=0 | x=0,y=1 | x=1,y=0

Non-locality of
$$P(a,b|x,y)$$
 : $NL[P]:=\sum_{x,y\in\{0,1\}}\frac{1}{4}\cdot\Pr[x\wedge y=A\oplus B]$

 $P \text{ non-local} \Leftrightarrow NL[P] > 3/4$

P quantum $\Rightarrow NL[P] \lessapprox 0.85$ (Tsirelson, 1980)

Non-locality of
$$P(a,b|x,y)$$
 : $NL[P]:=\sum_{x,y\in\{0,1\}}\frac{1}{4}\cdot\Pr[x\wedge y=A\oplus B]$

$$P \text{ non-local} \Leftrightarrow NL[P] > 3/4$$
 $P \text{ PR-box} \Leftrightarrow NL[P] = 1$

$$P \text{ PR-box} \Leftrightarrow NL[P] = 1$$

$$P \operatorname{quantum} \Rightarrow NL[P] \lessapprox 0.85$$

Non-locality of
$$P(a,b|x,y)$$
 : $NL[P]:=\sum_{x,y\in\{0,1\}}\frac{1}{4}\cdot\Pr[x\wedge y=A\oplus B]$

$$P \text{ non-local} \Leftrightarrow NL[P] > 3/4$$
 $P \text{ PR-box} \Leftrightarrow NL[P] = 1$

$$P \text{ PR-box} \Leftrightarrow NL[P] = 1$$

$$P \operatorname{quantum} \Rightarrow NL[P] \lessapprox 0.85$$

$$P$$
 isotropic \Leftrightarrow

$$\Pr[x \wedge y = A \oplus B] = p \ , \ \forall x,y \in \{0,1\}$$
 and
$$P(a|x) = P(b|y) = 1/2$$

Non-Locality Distillation

Goal: NL[Q] > NL[P]

Motivation: Why considering non-locality distillation?

Known Results about Non-Locality Distillation

Impossibility Results

- ⇒ Bell's bound ("no non-locality from locality")
- ⇒ Tsirelson's bound ("no non-quantum from quantum")
- ⇒ No non-locality distillation from two isotropic systems (Short, 2008)

Possibility Results

 \Rightarrow none!

Non-Locality Distillation Protocol

 $\underline{\operatorname{Claim}}$: There exists P such that NL[Q] > NL[P]

Distillable System

$$NL[P_d] = 0.75 + \varepsilon/2$$

$$NL[Q_d] = 0.875$$

Distillable System

$$NL[P_d] = 0.75 + \varepsilon/2$$

$$NL[Q_d] = 0.875$$

Limited Distillability for Isotropic Quantum Systems

Proof Idea:

- 1. Simulate distillation circuit by quantum circuit by measuring certain mixed entangled states.
- 2. Show that there is **no** non-interactive entanglement distillation protocol for these mixed entangled states.
- 3. As non-locality and entanglement are different resources we lose something, the "gap".

Limited Distillability for Isotropic Quantum Systems

Proof Idea:

- Simulate distillation circuit by quantum circuit by measuring certain mixed entangled states.
- 2. Show that there is **no** non-interactive entanglement distillation protocol for these mixed entangled states.
- 3. As non-locality and entanglement are different resources we lose something, the "gap".

Conclusions and Open Problems

- There exists distillable quantum and non-quantum non-locality
- Isotropic quantum non-locality at most limitedly distillable
- Infinite number of non-distillable isotropic systems

- Can isotropic systems be distilled at all?
- CHSH non-locality "right" measure of non-locality?

Any Questions?

For more information see: arXiv:0808.3317 + arXiv:0809.3173